Development of Calculus in India

K. Ramasubramanian and M. D. Srinivas

In this article we shall present an overview of the developnécalculus in Indian mathematical
tradition. The article is divided naturally into two parta.the first part we shall discuss the de-
velopments during what may be called the classical pertadirsg with the work ofAryabhata

(c. 499cE) and extending up to the wotkarayana Pandita (c. 1350). The work of the Kerala
School starting witiMladhava of Sangamagrama (c. 1350), which has a more direct bearing
on calculus, will be dealt with in the second part. Here wél sliscuss some of the contributions
of the Kerala School during the period 1350-1500 as outlingtle seminal Malayalam work
Yuktibhasa of Jyesthadeva (c. 1530).

PART | : THE CLASSICAL PERIOD
Aryabhata to Narayana Pardita (c. 500-1350CE)

1. Introduction

In his pioneering history of calculus written sixty yearoa@arl Boyer was to-
tally dismissive of the Indian contributions to the conegptdevelopment of the
subjectt Boyer’s historical overview was written around the sameetinhen (i)
Ramavarma Maru Thampuran and Akhileswarayyar broughthmufitst edition
of the Mathematics part of the seminal teXanita-yukti-bhasa, and (ii) C.T. Ra-
jagopal and his collaborators, in a series of pioneerindist) drew attention to
the significance of the results and techniques outlinédikyibhasa (and the work
of the Kerala School of Mathematics in general), which seehave been forgot-
ten after the initial notice by Charles Whish in early nirggtth century. These and
the subsequent studies have led to a somewhat differergg@mn of the Indian
contribution to the development of calculus as may be glé#fmoen the following
quotation from a recent work on the history of mathematics:

1c. B. Boyer, The History of the Calculus and its Conceptual DevelopmBuaver, New York
1949, pp. 61-62.

2L H. Hodgekin, A History of Mathematics: From Mesopotamia to Moderni@xford 2005,
p. 168.
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We have here a prime example of two traditions whose aims wemgpletely
different. The Euclidean ideology of proof which was so igfitial in the Is-
lamic world had no apparent influence in India (as al-Birwed lsomplained long
before), even if there is a possibility that the Greek tablegigonometric func-
tions’ had been transmitted and refined. To suppose that seramn of ‘calcu-
lus’ underlay the derivation of the series must be a matteoofecture.

The single exception to this generalization is a long workicmadmired in
Kerala, which was known a¥uktibhasa, by Jyesthadeva; this contains some-
thing more like proofs—but again, given the different pagad we should be
cautious about assuming that they are meant to serve thefsact®ons. Both
the authorship and date of this work are hard to establishtigx@he date usu-
ally claimed is the sixteenth century), but it does give arplions of how the
formulae are arrived at which could be taken as a versioneo€éticulus.

The Malayalam workGanita-yukti-bhasa (c. 1530) ofJyesthadeva indeed
presents an overview of the work of Kerala School of mathamaats dur-
ing the period 1350-1500E. The Kerala School was founded Byadhava
(c. 1340-1420), who was followed by the illustrious mathgomn-astronomers
Paramesvara (c. 1380-1460), his somamodara and the latter's student
Nilakantha Somayaj1 (c. 1444-1550). While the achievements of the Kerala
School are indeed spectacular, it has now been generatignesed that these are
in fact very much in continuation with the earlier work of iad mathematicians,
especially of thedryabhatan school, during the period 500-13566.

In the first part of this article, we shall consider some of itteas and meth-
ods developed in Indian mathematics, during the period 5888, which have a
bearing on the later work of the Kerala School. In particular shall focus on the
following topics: Mathematics of zero and infinity; itersgi approximations for
irrational numbers; summation (and repeated summatidngpwers of natural
numbers; use of second-order differences and interpalatiohe calculation of
jya or Rsines; the emergence of the notion of instantaneousitelif a planet in
astronomy; and the calculation of the surface area and wwhfra sphere.

2. Zero and Infinity
2.1. Background

The santi-mantra of Isavasyopanisad (0f Sukla-yajurveda), a text of Brah-
mavidya, refers to the ultimate absolute reality, tAeahman, asparna, the per-
fect, complete or full. Talking of how the universe emanditem the Brahman,
it states:

JUHER: YOTHE JOIcquH A
qUrEr qOrHTRTS quraTa e

That (Braﬁman) is pu‘rﬁa; this (the universe) ipurna; [this] parna emanates
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from [that] purna; even whenparna is drawn out ofpurna, what remains is
alsopurna.

Panini's Astadhyayt (c. 500BCE) has the notion ofopa which functions as a
null-morpheme Lopa appears in sevesutras of Chapters 1, 3, 7, starting with

M FAIT: 1(1.1.60).

Stnya appears as a symbol Ringala’s Chandah-sitra (c. 300BCE). In Chapter
VIII, while enunciating an algorithm for evaluating any [to& integral power
of 2 in terms of an optional number of squaring and multiglaa (duplication)
operationsgunya is used as a marker:

=7 g=H | f§: T3 (3.29-30)

Different schools of Indian philosophy have related nagisach as the notion of
abhava in Ny aya School, and th@nyavada of the Bauddhas.

2.2. Mathematics of zero inBrahmasphuta-siddhanta (c. 628CE) of
Brahmagupta

The Brahmasphuta-siddhanta (c. 628CE) of Brahmagupta seems to be the first
available text that discusses the mathematics of z&lowya-parikarma or the

six operations with zero are discussed in the chapter X\filalgebra kuttaka-
dhyaya), in the same six verses in which the six operations withtpes and
negatives ¢hanarna-sadvidha) are also discussed. Zero divided by zero is stated
to be zero. Any other quantity divided by zero is said totbeheda (that with
zero-denominator:

PERIEEE L B EIPE R RS
FOHAF T IAHOIALZG: TAH |
FAAMSRIGANA U= Y=TGUrH o & 5T |
S T TGN U= U101 Hafd |
TATARITHU U= U= Hafd TAATHTIH |
ST 7=T TAHUTGU YATgT §=T S

T "‘_“”T’w et Al @ @ @
HF O IO U= gaHUH A

SBTdhmasphu]fasiddh(inta of Brahmagupta, Ed. with his own commentary by Sudhakara
Dvivedi, Benaras 1902, verses 18.30-35, pp. 309-310.
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@W Yo a7 Teei] GHITYAHE a7

FUFAET: W @ @ 98 Fiadq ad|

...[The sum of] positive dhana) and negative ffna), if they are equal, is zero
(kham). The sum of a negative and zero is negative, of a positivezand is

positive and of two zeros, zerdiqnya).

... Negative subtracted from zero is positive, and posfiien zero is negative.
Zero subtracted from negative is negative, from positiyeositive, and from zero
is zero @kasa). ... The product of zero and a negative, of zero and a pesiti

of two zeroes is zero.

...A zero divided by zero is zero. ... A positive or a negatiixéded by zero is

that with zero-denominator.

2.3. Bhaskaracarya on Khahara

Bhaskaracarya Il (c. 1150), while discussing the mathematics of zerdsifia-
ganita, explains that infinity ¢nanta-rasi) which results when some number is
divided by zero is calledhahara. He also mentions the characteristic property of
infinity that it is unaltered even if ‘many’ are added to org¢akaway from it, in
terms similar to the invocatory verse bfavasyopanisad mentioned abové:

GEU Had W JF g Ufa o

59 Fgq @ wgd 79 7 3= a9 a3 # UT T

L AGHAT 30 TfA: @G A

FfeAfer: el 9 Tarey giegsEa 997

TEEfY YR SIS HTI] Fge

A?{uantity divided by zero will be (calledjhahara (an entity with zero as di-
visor). Tell me .. .three divided by zero ... This infinitenanta or that without
end) quantitytsj is calledkhahara.

In this quantity,khahara, there is no alteration even if many are added or taken
out, just as there is no alteration in the Infiniten@nta), Infallible (acyuta)

[Brahman] even though many groups of beings enter in or etadnam [It] at
times of dissolution and creation.

2.4. Bhaskaracarya on multiplication and division by zero

Bh'askarac arya while discussing the mathematics oinzéitivatz, notes that
when further operations are contemplated, the quantitygogiultiplied by zero
should not be changed to zero, but kept as is. Further hes skeatewhen the quan-
tity which is multiplied by zero is also divided by zero, theremains unchanged.

4Bijagamta of Bhaskaracarya, Ed. by Muralidhara Jha, Benaras 1927asana on
Khasadvidham 3, p. 6.
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He follows this up with an example and declares that this kihdalculation has
great relevance in astronomy:

N @ AYgH Jael €@ @IS Ui |
GEl: HT @I @wmf@?raﬁrsrﬁ%ﬁn

mﬁmmﬁ@a@m——mﬂuﬁ|
AT ga owTT Afaag ga

® uggnara fo ag @& a1

Ao ° g8 @Oy 0|
T T F: GO FoIST-

g ferfargefoa: agafenfe: |

m“ﬁ T T 0| TTY &: 9/ 31 FT:
oI TT&S |
qar gegamo fae afafaar sewdo a1 st ufa: 981
FE e Jeford HETaaT: |

.. A quantity multiplied by zero is zero. But it must be red as such when
further operations [involving zero] are contemplated. Whero is the multiplier
of a quantity, if zero also happens to be a divisor, then thantty remains
unaltered . ..

..What is the number which when multiplied by zero, beingeatito half of
itself multiplied by 3 and divided by zero, amounts to sittyee?

.. Either following the inverse process or by choosing arddsaumber for the
unknown (‘rule of false position’), the quantity is obtatht® be 14. This kind of
calculation is of great use in mathematical astronomy.

Bh'askara works out his example as follows:

O[(x+g) xg} — 63

—x3 = 63
Therefore, x = 14 (1)

Bh'askara, it seems, had not fully mastered this kind o€ttafion with infinites-
imals” as is clear from the following example that he presémBijaganita while
solving quadratic equations by eliminating the middle t&rm

5Lilavatz of Bhaskaracarya, Ed. by H. C. Bannerjee, Calcutta 1927 asana on verses 45-46,
pp. 14-15.

GBTjaganita, cited above Vasana on avyaktavargadi-samikaranam 5, pp. 63—-64.
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: Trdfedr T @i afidr 79 |

YRR @Y AT TS AT |

Say what is the number which when added to half of itself, iplied by zero,
squared and the square being augmented by twice its rootieideéd! by zero,
becomes fifteen?

Clearly the problem as stated is

[00x+ 5] +2 x [0x + $)]
0

- 15 )

Bh'askara in hid’asana seems to just cancel out the zeros without paying any
heed to the different powers of zero involved. He convergsgioblem into the
equation

X712 X
[x+§] +2x[x+§]=15. 3)
Solving this, by the method of elimination of the middle terféh askara obtains
the solutionx = 2. The other solutiom—l—sf’) is not noted.
3. Irrationals and iterative approximations

3.1. Background

Baudhayana-sulva-sitra gives the following approximation foy/'2:”

WHTO AT aFARTe SqdTeATq e | GEa: |

The measure [of the side] is to be increased by its third aisdthird] again by
its own fourth less the thirty-fourth part [of the fourth]hat is the approximate
diagonal gavisesa).

1 1 1
2 9~ 14—
V2 t3732 3234
577
T 408
= 14142156 4)

7Baudhdyanas’ulvasﬂtmm (1.61-2), inThe Sulvasatras, Ed. by S. N. Sen and A. K. Bag, New
Delhi 1983, p. 19.
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The above approximation is accurate to 5 decimal pladésudhayana-sulva-
sutra—in the context of discussing the problem of circling a sgyaalso gives
an approximation for :

T AUS (hTIaauramd FaramE T araraad |
gefafaread T8 Gegara- AvSe TR e
If it is desired to transform a square into a circle, [a cordesfgth] half the

diagonal of the square is stretched from the centre to thie wik one-third [of

the part lying outside] added to the remainder [of the h&lfidnal] the [required]
circle is drawn.

If ais half-the side of the square, then the radiwg the circle is given by

[ (g) 2 +2). )

This corresponds te ~ 3.0883.

3.2. Algorithm for square-roots in Aryabhatiya

The Aryabhatiya of Aryabhata (c. 499CE) gives a general algorithm for com-
puting the successive digits of the square root of a numbes.pfocedure, given
in the following verse, is elucidated by us via an exaniple:

W gleaifered o astaerT [

TG g BT RITHAT= TAHI £ 2 s
4 9
Always divide the non-square (even) place byﬁ 5
twice the square-root [already found]. Having sub- 7 0
tracted the square [of the quotient] from the square 2 5
(odd) place, the quotient gives the [digit in the] 2 5
next place in the square-root. 0 0

3.3. Approximating the square-root of a non-square number

The method for obtaining approximate square-rastfna-mula) of a non-square
number @malada-rasi) is stated explicitly inTrisatika of Sridhara (c. 750)%°

BBaudhdyanas’ulvasﬂtmm (1.58), ibid., p. 19.

9 Aryabhatiya of Aryabhata, Ed. by K. S. Shukla and K. V. Sarma, New Delhi 1976,
Ganitapada 4, p. 36.

107visatika of Sridhara, Ed. by Sudhakara Dvivedi, Varanasi 1899, verse 46, p. 34.
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Multiply the non-square number by some large square nuntdies,the square-
root [of the product] neglecting the remainder, and divigethe square-root of
the multiplier.

Narayana Pandita (c. 1356) has noted that the solutionsiafga-prakrti (the
so called Pell's equation) can be used to compute succeggireximations to the
square-root of a non-square numbeér:

e ITe] a6 I qgIatst 9e adf |
B U T YHG HAHTIHA |

[With the number] whose square-root is to be found aspthg:rt: and unity as
the ksepa, [obtain the greater and smaller] roots. The greater roadeld by the
lesser root is an approximate value of the square-root.

Narayana considers the example
102 + 1=y (6)
and gives the approximate values:

19 721 27379
Vior —, o0 2=
6’ 228 8658

which are obtained by successive compositidiigi¢ana) of the solutionx =
6, y =912

()

228=(2)(6)(19, 721= (10)(6)>+ (19>, andsoon

3.4. Approximate value ofz in Aryabhatiya

Aryabhata (c. 499) gives the following approximate value for*3

T TAHEIT FTIEETAT TEHTOMH |
FAg A aH RTGTHHAT JAANIME: |

11G(mz‘takaumudz‘ of Narayana Pandita, Ed. by Padmakara Dvivedi, Part I, Benaras 1942,
verse 10.17, p. 244.

12Bhavana or the rule of composition enunciated by Brahmagupta isriresformation X, Y)—
(X2 + DY2, 2XY) which transforms a solutior = X, y = Y of the equatiorx? — Dy? = 1, into
another solution with larger values f&ry, which correspond to higher convergents in the continued
fraction expansion of/D and thus give better approximations to it.

lgﬁryabhaﬁya, cited aboveGanitapada 10, p. 45.
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One hundred plus four multiplied by eight and added to siwty-thousand: This
is the approximate measure of the circumference of a cirtiese diameter is
twenty-thousand.

Thus as per the above verse~ 53832 — 3.1416.

3.5. Successive doubling of the sides of the circumscribinmplygon

It appears that Indian mathematicians (at least in Argabhatan tradition)
employed the method of successive doubling of the sides afcamscribing
polygon—starting from the circumscribing square leadio@th octagon, etc.—
to find successive approximations to the circumference adfcdec This method
has been described in the later Kerala teXtgtibhasa (c. 1530) of Jyesthadeva
and Kriyakramakari commentary (c. 1535) dfankara Variyar on Lilavati, of
Bhaskara Il. The latter cites the verses dladhava (c. 1340-1420) in this con-
nection and notes at the end tHét:

U9 JTacHTE GEHarHTITR g T |

Thus, one can obtain [an approxmatlon to the circumferaficee circle] to any
desired level of accuracy.

E Az A, Ay
—
B
D 3
<
[N

BZ
o S

FIGURE 1. Findingthe circumference of a square from circum-
scribing polygons.

14} f1Gvats of Bhaskara Il, Ed. with commentaryKriyakramakari of Sankara Variyar by
K. V. Sarma, Hoshiarpur 1975, comm. on verse 199, p. 379.
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We now outline this method as describedimktibhasa.'® In Figure 1,EOSA
is the first quadrant of the square circumscribing the givestec E A; is half the
side of the circumscribing square. L&tA; meet the circle a€;. Draw A>C1 By
parallel toES E Az is half the side of the circumscribing octagon.

Similarly, let O A, meet the circle a€,. Draw A3C,Bg parallel toEC;. E Az
is now half the side of a circumscribing regular polygon ofsldes. And so on.
Let half the sides of the circumscribing square, octagon ké&denoted

l1=EA, l2=EAs, I3=EAs, ... (8)
The correspondingarnas (diagonals) are
ki=0A;, kn=0Ay, ks=0A;, ... 9)
And the abhadhas (intercepts) are
a1 = D1A, ap = DAy, ag= D3A3, ... (10)

Now

lh=r, ki=+2r and a1=%- (11)

Using thebhuja-koti-karna-nyaya (Pythagoras theorem) andairasika-nyaya
(rule of three for similar triangles), it can be shown that

|
b = hi—(ka—r) = (12)
a
k3 = r2+13 (13)
k2_ 2_|2
and a = M (14)
2ko

In the same wayn11, knt1 andan,1 are to be obtained in terms b, k, and
an. These can be shown to be equivalent to the recursion nefhio

Ines = - [/ 2 +12) = 1], (15)

15Ganita-yukti-bhd§d of Jyesthadeva, Ed. and Tr. by K. V. Sarma, with Exp. Notes by K. Ra-
masubramanian, M. D. Srinivas and M. S. Sriram, 2 Vols, Hataln Book Agency, New Delhi 2008.
Reprint Springer 2009, Vol. | Section 6.2, pp. 46—49, 180-2685—69.

18t we setr = 1 andlp = tandy, then equation (15) givdgy 1 = tan(%“). Actually, 6y = zniJrI

T

and the above method is based on the fact that for laygé tan# A 2“# =Z.
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4. Summation (and repeated summations) of powers of naturalumbers
(sankalita)

4.1. Sum of squares and cubes of natural numbers id ryabhatiya
The ancient texBrhaddevata (c. 3" centuryBCE) has the result
2+3+...4+1000= 500, 499 (16)

Aryabhata (c. 499CE), in the Ganitapada of Aryabhatiya, deals with a general
arithmetic progression in verses 19—-20. He gives the sutrecgquares and cubes
of natural numbers in verse 22:

YO uaTT F AT rgafioe yeisw: |

qutafogs: g #aq fafaas g=fafoaTg )

The product of the three\quantities, the number of terms phes the same in-
creased by the number of terms, and the number of terms, wiieled by six,

gives the sum of squares of natural numbersra-citi-ghana). The square
of the sum of natural numbers gives the sum of the cubes ofalatumbers
(ghana-citi-ghana).

In other words,

nn+1)@n+1)

1°+2°4+3+...4n° = — a7
P+22432+...4n° = [14243+...+n)?
n(n + 1)7?
— [%} ) (18)

4.2. Repeated sum of natural numbers i ryabhatiya

Aryabhata also gives the repeated sum of the sum of the natural numbeiksa-
lita-sarikalita or vara-sarikalita):*
T TR e e T e a e |
vga: O fRfoes: GFugeHr fagar an
Of the seriesqpaciti) 1, 2, ... ,n, take three terms in continuation of which the
firstis the given number of termgdccha), and find their product; that [product],

or the number of terms plus one subtracted from its own cubeeti by six, gives
the repeated sun{ti-ghana).

17Aryabhatiya, cited above Ganitapada 22, p. 65.
18firyabha_tz'ya, cited above Ganitapada 21, p. 64.
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We have

_ n(n+1)

1+24+3+...+n 5

(19)

Aryabhata’s result expresses the sum of these triangular numbersoifiduns:

(1+1) 2+1) (n+1)  [n(n+1(n+2)]
1 5 +2 5 4+...4+n > = 6
3
_ [+D 6—(n+1)]. (20)

4.3. Narayana Pandita’s general formula for Varasarkalita

In his Ganita-kaumudi, N arayanPaulita (c. 1356) gives the formula for the
rth-order repeated sum of the sequence of numbers 1, 2, 3:19.,

I aRiHdr: TRIeEaTl g JS: |
UFR T FIIeIgral aRggioad |

The pada (number of terms in the sequence) is the first term [of an metic
progression] and 1 is the common difference. Take as nuorsrfthe terms
in the AP] numbering one more thamira (the number of times the repeated
summation is to be made). The denominators are [terms of anfAlfe same
length] starting with one and with common difference onee Tésultant product
is vara-sankalita.

Let
1+2+3+...+n=n(n72+1)=vn(1). (21)
Then, Nar ayals result is
VIO = v v Y D (22)

Narayais result can also be expressed in the form of a sum of poblgom-
bers:

Zn:[m(m+1)...(m+r—1)]_[n(n+1)...(n+r)] (24)
m=1

[1.2...r] T [L2...(r +1)]

19Ganitakaumudi of N'arayamParlita, Ed. by Padmakara Dvivedi, Part |, Benaras 1936, verse
3.19-20, p. 123.
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This result can be used to evaluate the sPijs ; k2, >r_; k3, ... by induction.
It can also be used to estimate the behaviour of these surtesden.

4.4. Summation of geometric series

The geometric series4 2+ 22 + ... 2" is summed in Chapter VIII of Pingala’s

Chandah-sutra (c. 300BCE). As we mentioned earlier, Pihgala also gives an

algorithm for evaluating any positive integral power of arher (2 in this context)

in terms of an optimal number of squaring and multiplicatigerations.
Mahaviracarya (c. 850), in hisGanita-sara-sangraha gives the sum of a geo-

metric series and also explains the Pingala algorithmrdlifiig the required power

of the common ratio between the terms of the seffes:

€U THII! A AT : TR |

The first term when multiplied by the product of the commoiréguna) taken

as many times as the number of term&da), gives rise to thegunadhana.
This gunadhana, when diminished by the first term and divided by the common
ratio less one, is to be understood as the sum of the geoaleigdes (una-
sankalita).

That is

2 o1 ar"-1)
atar4+arc+...+ar =—. 25
+ar+ar+...+ D (25)
Virasena (c. 816), in his commentarihavala on theSatkhandagama, has made
use of the sum of the following infinite geometric series ia &valuation of the
volume of the frustum of a right circular coffé:

1 [(1\? 1\" 4
1+Z+(Z) +"'+(Z) +oo=3 (26)

The proof of the above result is discussed in thejabhatiya-bhasya (c. 1502)

of Nilakantha Somayaji. As we shall see later (section 10.NjJakantha makes

use of this series for deriving an approximate expressioa famall arc in terms
of the corresponding chord in a circle.

ZOGanitasdmstmgmha of Mahaviracarya, Ed. by Lakshmi Chanda Jain, Sholapur 1963,
verses 2.93-94, pp. 28-29.

21See, for instance, T. A. Sarasvati Amn@gometry in Ancient and Medieval IndiMotilal
Banarsidass, Delhi 1979, Rep. 2007, pp. 203-05.
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5. Use of Second-order differences and interpolation in coputation of
Rsines Jyanayana)

Jya, Kot and Sara

Thejya or bhuja-jya of an arc of a circle is actually the half-chor@r-{ha-jya
or jyardha) of double the arc. In the Figure 2, R is the radius of the circlegya
(Rsine),koti or koti-jya (Rcosine) andiara (Rversine) of thecapa (arc) EC are
given by:

jya (arc EC)=CD = Rsin({COE) 27)
koti (arc EC)= 0D = Rcog/COE) (28)
Sara (arc EC) = ED = Rverf/COE)

R — Rcog/COE). (29)

For computing standard Rsine-tableaif.ita-jya), the circumference of a circle

E
&
E

O

FIGURE 2. Jya, KotiandSara.

is divided into 21600and usually the Rsines are tabulated for every multiple of
2285, thus giving 24 tabulated Rsines in a quadrant. Using theevafz ~
52832 — 31416, given byAryabhata, the value of the radius then turns out to be
3437 44" 19”. This is accurate up to the seconds, but is usually apprdgiina
to 3438. Using a more accurate value of Madhava (c. 1340-1420) gave the
value of the radius correct to the thirds as 348% 48” which is also known by
the Katapayadi formula devo-visvasthali-bhrguh.
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5.1. Computation of Rsines

Once the value of the radilR is fixed (in units of minutes, seconds etc.) the 24
Rsines can be computed (in the same units) using standaittre of jyotpaiti
(trigonometry). For instanc&jarahamihira has given the following Rsine values
and relations in his®aricasiddhantika (c. 505)%?

Rsin(30°) = ; (30a)
Rsin(45”) = % (30b)
Rsin(60°) = ?R (30c)
Rsin(90®) = R (30d)
Rsin(A) = Rcog90— A) (32)
Rsi’(A) + Rcog(A) = R? (32)
Rsin(g) = (%)[Rsinz(A)+Rver§(A)]§
1
_ (g)Z[R—RcosA]%. (33)

The above Rsine values (30) and relations (31)—(33) can beedeusing the
bhuja-koti-karna-nyaya (Pythagoras theorem) andairasika (rule of three for
similar triangles), as is done for instance in th@sana-bhasya of Prthudaka-
svamin (c. 860) onBrahmasphutasiddhanta (c. 628) of Brahmagupta. Equa-
tions (30)—(33) can be used to compute all 24 tabular Rsihesa

5.2. Aryabhata’s computation of Rsine-differences

The computation of tabular Rsine values was made much sirapl&ryabhata
who gave an ingenious method of computing the Rsine-difiezs, making use of
the important property that the second-order differenE&smes are proportional
to the Rsines themselvés:

22pggicasiddhantika of Varahamihira, Ed. by T. S. Kuppanna Sastry and K. V. Sarma, Madras
1993, verses 4.1-5, pp. 76-80.
23Aryabha_tz'ya, cited above Ganitapada 12, p. 51.
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TETETISAT e @fosd fgaranda)

T HGAT e eaE 1= SraTfor |

The first Rsine divided by itself and then diminished by thet@nt will give
the second Rsine-difference. The same first Rsine, dinedidly the quotients
obtained by dividing each of the preceding Rsines by the Reshe, gives the
remaining Rsine-differences.

Let By = Rsin (225), By = Rsin (450), ..., B24 = Rsin (90°), be the
twenty-four Rsines, and let1 = B;, A2 = Bp — By, ..., Ax = Bx — Bk_1, ...
be the Rsine-differences. Then, the above rule may be esqutes’

Ay = B1—— (34)

_ (Bi+B2+...+ By

Avr1 = Bs B

(k=1,2,...,23). (35)

This second relation is also sometimes expressed in theagni form

A+ Azt ... +A
Akgr = A — BLF 2; + Ak (k=1,2,...,23.  (36)
1

From the above it follows that
Aky1 — Ak = — k=1,2,...,23). (37)

SinceAryabhata also takesA; = B; = Rsin(225) ~ 228, the above relations
reduce to

A1 = 2258 (38)

—By
Akl — A = —b k=12...,23). 39
k+1 k 225 ( s & s ) ( )

5.3. Derivation of the Aryabhata-relation for the second-order
Rsine-differences

Aryabhata’s relation for the second-order Rsine-differences is\@eriand made
more exact in thedryabhatiya-bhasya (c. 1502) ofNilakantha Somayaji and
Yuktibhasa (c. 1530) ofJyesthadeva. We shall present a detailed account of

24Aryabha‘ga is using the approximatiom, — A1 ~ 1’ and the second terms in the RHS of
(34)—(36) and the RHS of (37) and (39) have an implicit facofA> — A1). See (45) below which is
exact.
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the first and second-order Rsine-differences as giveirintibhasa 2° later in
Section 16. Here we shall only summarize the argument.

In Figure 3, the arc&Cj and ECj 1 are successive multiples of 225The
Rsine and Rcosine of the arE<C; andEC;; are given by

Bj = CjPj, Bj;11=CjuPjn (40)
and Ki = CiTj, Kjz1=Cj1Tj41, (41)

respectively. LeM; 1 andM; be the mid-points of the ar&S;Cj 1, Cj_1C;
and the Rsine and Rcosine of the akbj and E M1 be denoted respectively
by Bj_%, B K K

i+3°

i+30 -3

Cj+1

T U Ty Yy ©

FIGURE 3. Derivation of Aryabhata relation.

25Ganita-yukti-bhd$d, cited above, Section 7.5.1, pp. 94-96, 221-24, 417-20.
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Let the chord of the ar€; Cj ;1, be denoted by and letR be the radius. Then
a simple argument based omirasika (similar triangles) leads to the relatiof:

Bii—B = (&)Kju (42)
K-3-Kig = (g8 (43)
Thus we get
Ajy1—Aj = (Bj+1—Bj) —(Bj—Bj-1)
= (&)’ (44)
We can also express this relation in the form
Aj+1—Aj=%ll_A2)- (45)

The above relations are exactryabhata’s relation (39) corresponds to the ap-
proximationsB; ~ 225 andA; — Az ~ 1’ so that

o2 (A1—Ayp) 1
(R =5~ (a2s) @9
In Tantrasangraha, Nilakantha Somayajt has given the finer approximatid:
2 AL — A 1
( a ) _ (A1—-4r) ). (47)
R B1 233}

26Equations (42) and (43) are essentially the relations:

Rsin(x +h) — Rsinx = (ﬁR) Rcos(x+ 2)

h h o .
Rcos(x - 5) — Rcos(x + 5) (ﬁ) Rsinx,

with o = 2Rsin % These lead to (44) in the form:

) ) . ) N2 .
(Rsin(x + h) — Rsinx) — (Rsinx — Rsin(x — h)) = — (ﬁ) Rsinx.

27Tantmsaﬂgmha of Nilakantha Somayaj1, Ed. with Laghu-vivrti of Sankara Variyar by
S. K. Pillai, Trivandrum 1958, verse 2.4, p. 17.
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This is further refined bgankara Variyar in his commentanyaghu-vivrtiin the

form:28
a2 (A1—Ap) 1
(ﬁ) - B, (23332/) ' (48)

Sincea = 2Rsin 11230, we find that the above relation is correct up to seconds.
Commenting oMryabhata’s method of computing Rsines, Delambre had re-
marked?®

The method is curious: it indicates a method of calculatimgtaible of sines by
means of their second-differences... This differenti@lcess has not up to now
been employed except by Briggs, who himself did not know thatconstant
factor was the square of the chatdA (= 3°45') or of the interval, and who could
not obtain it except by comparing the second differenceainéd in a different
manner. The Indians also have probably done the same; th@ynet the method
of differences only from a table calculated previously byemmetric process.
Here then is a method which the Indians possessed and whfolirigl neither
amongst the Greeks, nor amongst the Arabs.

5.4. The Rsine-table ofAryabhata

In the Gitika-pada of Aryabhatiya, Aryabhata has given a table of Rsine-
differences®

nfy vfw wfQ ufw ufw 3y

sfQ gt wrie forsr wfe foe)

e 7y g0 ufe fFe

TG FE R |

225, 224, 222, 219, 215, 210, 205, 199, 191, 183, 174, 164,14 131, 119,

106, 93, 79, 65, 51, 37, 22, and 7—these are the Rsine-diffese[at intervals of
225’ of arc] in terms of the minutes of arc.

The above values follow directly frofryabhata’s relation(39) for the second
order Rsine-differences. To start withy; = B; = Rsin(225) ~ 225. Then we
get,Ap = By — % = 224 and so on.

The Rsine-table afryabhata®! (see Table 1), obtained this way, is accurate up
to minutes. In this table, we also give the Rsine values giye@ovindasvamin
(c. 825) in his commentary oW ahabhaskariya of Bhaskara I, and byMadhava

28Ibid., comm. on verse 2.4.

29Delambre,Historie de I' Astronomie Ancienng 1, Paris 1817, pp. 457, 459f, cited from
B. B. Datta and A. N. Singh, ‘Hindu Trigonometry’, Ind. Jotfist. Sc.18, 39-108, 1983, p. 77.

30 Aryabhatiya, cited above Gitikapada 12, p. 29.

31See, for instance, A. K. Bagylathematics in Ancient and Medieval Indi¥aranasi 1979,
pp. 247-48.
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(c. 1340-1420) as recorded in tAewyabhatiya-bhasya (c. 1502) ofNilakantha
Somayaji. ThoughGovindasvamin gives the Rsine values up to the thirds, his
values are accurate only up to the seconds; thodéaefhava are accurate up to
the thirds.

Arc-length| Aryabhata | Govindasvamin Madhava
(c. 499) (c. 825) (c. 1375)

3°45 225 224 50" 23”7 224 50" 227
7°30 449 448 42 53" 448 42’ 58"
11°15 671 670 40" 117 670 40" 16”
15°00 890 889 45" 08” 889 45" 15”
18°45 1108 11058 01”7 30” | 1108 01” 39"
22°30 1318 131833’ 56” | 1318 34" 07”
26°15 1520 1520 28’ 22" | 1520 28" 35"
30°00 1719 1718 52" 10” | 1718 52" 24"
33°45 1910 1909 547 19” | 1909 54" 35"
37°30 2093 2092 45" 46” | 2092 46" 03"
41°15 2267 2266 38" 44" | 2266 39’ 50”
45°00 24371 2430 50" 54" | 2430 51" 15”
4845 2588 2584 37" 43" | 2584 38’ 06”
52°30 2728 2727 20" 29" | 2727 20" 52"
56°15 2859 2858 22" 31" | 2858 22" 55”
60°00 2978 2977 10" 09”7 | 2977 10" 34"
63°45 3084 3083 12" 51 | 3083 13" 17"
67°30 3177 3176 03" 23” | 3176 03’ 50”
71°15 32568 3258 17" 54" | 3258 18’ 22"
75°00 3321 3320 36" 027 | 3320 36” 30”
78°45 3372 3371 417 017 | 3371 41" 29”
82°30 3409 3408 19" 427 | 3408 20" 11"
86°15 3431 3430 22" 427 | 3430 23’ 11”
90r00 3438 3437 44" 197 | 3437 44" 48"

TABLE 1. Rsine-table Oﬁryabhata, Govindasvamin andMadhava.

5.5. Brahmagupta’'s second-order interpolation formula

The Rsine table oAryabhata gives only the Rsine values for the twenty-four
multiples of 225. The Rsines for arbitrary arc-lengths have to be found bsrint
polation only. In hisKhandakhadyaka (C. 665),Brahmagupta gives a second-
order interpolation formula for the computation of Rsinessdrbitrary arcs. In this
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work, which is in the form of a manuakrana) for astronomical calculations,
Brahmagupta uses a simpler Rsine-table which gives Rsines only at iateiof
15° or 900:%?

TN OGS TN a o (a4 & auTd Ad-aHedT |

TR gard Hgrg-Tas HvFH |

Multiply the residual arc after division by 90By half the difference of the tabular
Rsine difference passed ovejafa-khanda) and to be passed ovebHogya-
khanda) and divide by 900 The result is to be added to or subtracted from half
the sum of the same tabular sine differences according si$hif-sum] is less
than or equal to the Rsine tabular difference to be passedt Whults is the true
Rsine-difference to be passed over.

Let h be the basic unit of arc in terms of which the Rsine-table isstwicted,
which happens to be 22 the case ofAryabhatiya, and 900in the case of
Khandakhadyaka. Let the arc for which Rsine is to be found be given by

s=jh+e¢ forsomej =0,1,... (49)

Now Rsin(jh) = Bj are the tabulated Rsines. Then, a simple interpolation
(trairasika) would yield

Rsin(jh+¢) = Bj+<%)(Bj+l_Bj)

Rsin(jh) + %A,—H. (50)

Instead of the above simple interpolati®hrahmagupta prescribes
o . & 1 . _ e\ (Aj~ Ajya)
Rsin(jh + €) = Bj + <H) [(5) (Aj + Ajy1) = (E) — ey

Here, the sign is chosen to be positive\if < Aj;1, and negative iiAj > Ajya
(as in the case of Rsine). Strahmagupta’s rule is actually the second-order
interpolation formula

Rsin(jh +¢) = Rsin(jh)+ (%) [(%) (A + Ajar) — <%) (A —2Aj+1)}
= Rsin(jh)+(%) 7(AJ+12+AJ) (E)Z(AJHZ— Aj)
— Rsin(jh) + (%) Ajp1+ (%) [% 1] (Ai+12— A1) (s2)

32K handakhadyaka of Brahmagupta, Ed. by P. C. Sengupta, Calcutta 1941, p. 151.
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6. Instantaneous velocity of a planet{atkalika-gati)
6.1. True daily motion of a planet

In Indian Astronomy, the motion of a planet is computed by imgkise of two
corrections: thenanda-samskara which essentially corresponds to the equation
of centre and th&ighra-samskara which corresponds to the conversion of the
heliocentric longitudes to geocentric longitudes. Thenda correction for planets
is given in terms of an epicycle of variable radiyswhich varies in such a way
that

r o

K R (53)
whereK is the karna (hypotenuse) or the (variable) distance of the planet from
the centre of the concentric anglis the tabulated (or mean) radius of the epicycle
in the measure of the concentric circle of radRis

FIGURE 4. Manda correction.

In Figure 4,C is the centre of concentric on which the mean plaPegts lo-
cated. CU is the direction of theucca (aphelion or apogee as the case may be).
P is the true planet which lies on the epicycle of (variable)iuar centered at
Po, such thatPy P is parallel toCU. If M is the mean longitude of a planetthe
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longitude of theucca, then the correctionfanda-phala) A p is given by
. r .
Rsin(Au) = (R) Rsin(M — a)
o .
- (ﬁ) Rsin(M — ). (54)

For smallr, the left hand side is usually approximated by the arc itsdlhe
manda-correction is to be applied to the mean longitddeto obtain the true or
manda-corrected longitude given by

ro 1 .
L=M— (E) (E) Rsin(M — a). (55)
If Ny andny are the mean daily motions of the planet and dhes, then the true
longitude on the next day is given by

u+n=M+npm) — (rﬁo) (%) Rsin (M + nm — a — ny). (56)

The true daily motion is thus given by

fo

R) (%) [RsiN{(M — ) + (Nm — ny)} — Rsin (M — a)]. (57)

n= nm - (
The second term in the above is the correction to mean daitiom{yati-phala).
An expression for this was given byhaskara | (c. 629) in Mahabhaskariya,
where he makes use of the approximation:

N (Nm —ny) x
- (2%5) Rsine-difference atM — «).

(58)
In the above approximatiorin, — ny) is multiplied by tabular Rsine-difference
at the 225arc-bit in which (the tip of the arc)M — «) is located. Therefore,
under this approximation, as long as the anomabn{ra), (M — a), is in the
same multiple of 225 there will be no change in th@iti-phala or the correction
to the mean velocity. This defect was noticedRlyaskara also in his later work
Laghubhcisk:am‘ya:34

AAAETAT e FTIATI =TT |
ANRY A THTaTa AT |

Rsin{(M — a) + (Nm — Ny)}
— Rsin(M — a)

33Mah&bhdskariya of Bhaskara |, Ed. by K. S. Shukla, Lucknow 1960, verse 4.14, p. 120.
34Laghubhdskam‘ya of Bhaskara |, Ed. by K. S. Shukla, Lucknow 1963, verses 2.14-5, p. 6.
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QTS A HTA T SraTH i fasiad |

Whilst the Sun or the Moon moves in the [same] element of hezgtis no change
in the rate of motion {hukt:), because the Rsine-difference does not increase or
decrease; viewed thus, the rate of motion [as given abowigfective.

The correct formula for the true daily motion of a planet, éogmg the Rcosine
as the ‘rate of change’ of Rsine, seems to have been first biw&hinjala (c. 932)
in his short manuaLaghumanasa 3° and also byAryabhata Il (c. 950) in his
Maha-siddhanta:®

FIfeFAY HFIATHFT FATCFAAI

The kotiphala multiplied by the [mean] daily motion and divided by the rasli
gives the minutes of the correction [to the rate of the mdtion

This gives the true daily motion in the form

1

Nn=nm— (Nm—nNy) (rﬁo) (E) RcodM — a). (59)

6.2. The notion of instantaneous velocityfatkalikagati) according to
Bhaskaracarya Il

Bhaskaracarya Il (c. 1150) in hisSiddhantasiromans clearly distinguishes the
true daily motion from the instantaneous rate of motion. Aedjives the Rcosine
correction to the mean rate of motion as the instantanedasofanotion. He
further emphasizes the fact that the velocity is changirggyeinstant and this is
particularly important in the case of Moon because of itsctapotion 3’

A E e =R 18 I TFeT qeaqa7aqr=aie |

Wﬁmmﬁﬁ
TAT AT TgHIHF TR o] H-GuREReT & |
Hﬁwﬁwmwﬁ?ﬂﬁdwmmqq g5ad |

TEOHTATHTEAT I W& 97  THAT TR |

The true daily motion of a planet is the difference betweentthe planets on
successive days. And it is accurat@iuta) over that period. Thé&otiphala
(Rcosine of anomaly) is multiplied by the rate of motion af thanda-anomaly
(mrdu-kendra-bhukti) and divided by the radius. The result added or subtracted
from the mean rate of motion of the planet, depending on vendtie anomaly is

in Karkyadi or Mrgadi, gives the true instantaneous rate of motiofkaliks
manda-sphutagati) of the planet.

35Laghumdna5a of Munjala, Ed. by K. S. Shukla, New Delhi 1990, verse 3.4, p. 125.
38)fahasiddhanta of Aryabhata Il, Ed. by Sudhakara Dvivedi, Varanasi 1910, verse 3.158p. 5

37Siddhdntas’immani of Bhaskaracarya, Ed. by Muralidhara Chaturvedi, Varanasi 1981,
verses 2.36-8, p. 119.
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In the case of the Moon, the ending moment oft:38 which is about to end or
the beginning time of &thi which is about to begin, are to be computed with the
instantaneous rate of motion at the given instant of times Béginning moment
of a tith: which is far away can be calculated with the earlier [dailgder of
motion. This is because Moon’s rate of motion is large aniesdrom moment
to moment.

Here,Bhaskara explains the distinction between the true daily rate of oroti
and the true instantaneous rate of motion. The former is ifferehce between
the true longitudes on successive days and it is accurateeaate of motion, on
the average, for the entire period. The true instantanesiesof motion is to be
calculated from the Rcosine of the anomalyiphala) for each relevant moment.

Thus if oy, andwy are the rates of the motion of the mean planet and:the,
thenwm — wy is the rate of motion of the anomaly, and the true instantas eate
of motion of the planet at any instant is given Biiaskara to be

® = om + (Om — o) (%’) (%) RcosM — a), (60)

where M — «) is the anomaly of the planet at that instant.
Bhaskara explains the idea of the instantaneous velocity even me iyl in
his Vasana:3°

FR[ATTTTTFCTEAT: AR AT AN GATISTAraT AETHT-
forgaiat Ta=m FoTed O TFeT - | FRTaTegET
FH FFEEAAT TUHAG gl a9 F e
q 9T T JedTeiad goad ghal 59 fFe
Wﬁ|wqmamﬁﬁm|w
T g Ifd: | A=A9T JETON Jgfaid S5 id: |
EFSHRICHS  FaAT o FIoar] faran
WIS oI FerdiiQdg TeSader HTai| Hamer
I rl%—rn FTAT| Yd ATchTIch et mﬁw 7|
TR qET g BTy e
FHRrIEH TG 3R TSGR ES: T
FIATGAT T THT a7 FRITAICA-TEIal areh oy &l
wregn fafoems & o9 auT GHIEEH o1 e
FAErA=l TG a1 T35 qRIeal Gal Fc?
TS | DI | ATESIHEET Tfa g =
T IRy faarshIfE: |

384thiis the time taken by the Moon to lead the Sun exactly byihdongitude.
398iddhantasiromani, cited above,Vasana on 2.36-38, p. 119-20.
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Y MAFSaET AATTHERTIg A= T |

U9 TEFGAN-N Tawe AgaEed | I TE=TH|
FRATTRAFF AL FFAC: | HFATF TZTH-
@UE 4 1 Ul SN(geH: ([Qy) HISAT| dF arad
ATeh T HIGEUS FOTATUT: | gfe  Beamgeaar
frfiegs #ifesaman: sfgesr  ofesar &
T dIElG® THEHNgEUES a9 degaerErar
sRfgEaHaT|

I R AT UEHITF I ea@TaTa Fd Fes-
T ﬁﬁ?ﬂﬂmﬁﬁm T | ey H[A T A o5
A Al e EoTY SR e A
(280) HT=aH | T FFes Tor: IFESAT TT Arad qRfo
TUTE AT 1?&'% TTaeRIETe FTaT ggUTH ‘HICl-
WWWIWWWI
TG 0 TR Qs TUhe I GHTET JaTal
RELICESIPEICEI G uamm@rau——rmwﬁ

FHTET ATRTGUIT e S T Ao & eaueH |

The true daily velocity is the difference in minutes etciweEen the true planets
of today and tomorrow, either at the time of sunrise, or mag-dr sunset. If to-

morrow’s longitude is smaller than that of today, then weutiainderstand the
motion to be retrograde. It is said “over that period”. Thidyomeans that, dur-
ing that intervening period, the planet is to move with tlater{on the average].
This is only a rough or approximate rate of motion. Now we Istislcuss the

instantaneous rate of motion... In this way, th@nda-corrected true instanta-
neous rate of motiontgtkaliki manda-parisphutagati) is calculated. In the
case of Moon, this instantaneous rate of motion is espgaiakful...Because of
its largeness, the rate of motion of Moon is not the same ewstgnt. Hence, in

the case of Moon, the special [instantaneous] rate of magistated.

Then, the justification for the correction to the rate of moti(gati-phala-
vasana). .. The rate of motion of the anomaly is the difference in the aalts of
today and tomorrow. That should be multiplied by the [cutir&sine-difference
used in the computation of Rsines and divided by 225. Nowfdhewing rule
of three to obtain the instantaneous Rsine-differencehdfirst Rsine-difference
225 results when the Rcosine is equal to the radius, then haehis it for the
given Rcosine. In this way, the Rcosine is to be multiplied22% and divided
by the radius. The result is the instantaneous Rsine-diffas and that should be
multiplied by the rate of motion in the anomaly and divided2®p. . .

Thus,Bhaskara is here conceiving also of an instantaneous Rsine-diftaren
though his derivation of the instantaneous velocity is seha obscure. These
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ideas are more clearly set forth in tAeyabhatiya-bhasya (c. 1502) ofNilakantha
Somayaji and other works of the Kerala School.

6.3. The szghra correction to the velocity and the condition for retrograde
motion

Bhaskara then goes on to derive the correct expression for the tresofahotion
as corrected by théighra-correction. In the language of modern astronomy, the
Sighra-correction converts the heliocentric longitude of thengls to the geocen-
tric longitudes. Here also, the Indian astronomers emptoggacycle, but with a
fixed radius, unlike in the case of theanda-correction.

If 1 is the manda-corrected fnanda-sphuta) longitude of the planet is the
longitude of thesighrocca, andrs, the radius of th&ighra-epicycle, then the cor-
rection §ighra-phala) Ao is given by

RsiN(Ac) = (E) Rsin (4 — ¢), 61)

where(u — () is the Sighrakendra andK is the hypotenusei{ghrakarna) given
by

K2 = R?+r2 - 2Rrscos(u — ¢). (62)

The calculation of th&ighra-correction to the velocity is indeed much more dif-
ficult as the denominator in (61), which is the hypotenusectvidepends on
the anomaly, also varies with time in a complex way. This hasnbnoted by
Bhaskara who was able to obtain the correct form of tfiehra-correction to the
velocity (sighra-gati-phala) in an ingenious wa§®

T @S ATHATE g5 gfagfgarar
@A TFedcHH: ﬁwamﬁwﬁm@r I

The Rsine of nlnety degrees less the degreeﬁgﬁm—correctlon for the longi-
tude @zghra-phala), should be multiplied by the rate of motion of thgyhra-
anomaly @rak-kendra-bhukti) and divided by the hypotenus&¢hra-karna).
This, subtracted from the rate of motion of tfighrocca, gives the true velocity
of the planet. If this is negative, the planet’'s motion isagtade.

If w is the rate of motion of thenanda-corrected planet ands is the rate of
motion of thesighrocca, then the rate of motion of th&ghra-anomaly iS(w — ws),

405iddhdntas’z‘mmam, cited above, verse 2.39, p. 121.
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and the true velocity of the planet is given by

(ws — w)RCcogAo)
S|

o = ws — [ (63)
The details of the ingenious argument giveniilyaskara for deriving the correct
form (63) of thesighra-correction to the velocity has been outlined by D. Arkaso-
mayaji in his translation ofiddhantasiromani**

SinceBhaskara’s derivation is somewhat long-winded, here we shall presen
a modern derivation of the result just to demonstrate ttaettpression given by
Bhaskara is indeed exact.

FIGURE 5a. Velocity of a planet as seen from the Earth.

In Figure B, S, E and P represent the positions of the Sun, Earth and an
exterior planet respectively. Letandos be the linear velocities of the planet and
the Earth with respect to the SuR.P’ andE E’ are lines perpendicular to the line
E P joining the Earth to the planet. L&, r represent the radii of the orbits of
the planet and the Earth (assumed to be cicular) around theeSpectively and
K, the distance of the planet from the Earth. For an exteriangt, thesighra-
correctionAs is given by the anglSP E.

41p. Arkasomayaiji,Siddhantasiromani of Bhaskaracarya, Tirupati 1980, pp. 157—161.
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If vt is the linear velocity of the planet as seen from the Earém the angular
velocity is given by

de Ut
=—=— 64
o= T (64)

The magnitude oft in terms ofv andos (for the situation depicted in Figureap
is

vt = 0 COSAc + 05 COSH. (65)

Also, from the triangleS E P, the distance of the planet from the Earth—known as
karna, and denoted in the figure—may be expressed as

K = RCcosAg +r cosd,
K — RcosA
or coy) = %. (66)
Using (66) in (65) we have
vt = 0COSAc + %(K — RcosAo)
K R
= % 1 cosAs (v - vs—)
r r
vt vs  COSAg (v —0s®)
or - = —= . 67
K r + K (67)

Making use of (64) and the fact that= Rw andvs = rws, the above equation
reduces to

[(ooS - w)RcosAa}
Wt = Ws — K 5

which is same as the expression given by Bh'askara (63).

Bhaskara in his Vasana*? explains as to why in théighra process a different
procedure for finding the rate of motion of the planet has terngloyed than the
one used in thenanda process:

FATIURRT: | AT TETTA ARG T T STIF e T |
FUITTUTA AT=aHd &1q | T4 ¥igfge | 7 8 Ffasraa

42bid., Vasana on 2.39.



230 K. Ramasubramanian and M. D. Srinivas

FHEAN-R W frea=asii AT F G AT T
Wﬁwmqumw
FUR | AT STY FO HISHE TgeaTg dg=l Tie-
qrqera+ fedar=q aerafoafy: #fcua) aerr.

Here is the justification. Theézghra-correction to the rate of motion is the dif-
ference between th&ghra-phalas of today and tomorrow. If that is derived in
the same way as thewanda-correction to the rate of motion, the result will be
incorrect even if it were to be divided by the hypotenusg/{ra-karna)... The
difference is not just due to the change in the anomaly [wiscthe argument
of the Rsine] but also otherwise... The result of dividingtbglay’s hypotenuse
is different from that of dividing by that of tomorrow. Evehthe hypotenuses
turn out to differ by small amount, the quantities they déviare large and thus
a large difference could result. Hence, this way of apprdattich was adopted
in the case ofnanda-correction to the rate of the motion] has been forsaken and
another has been devised by the great intellects. That alaws...

6.4. The equation of centre is extremum when the velocity coection van-
ishes

Later, in theGoladhyaya of Siddhantasiromani, Bhaskara considers the situa-
tion when the correction to the velocitydti-phala) vanisheg

F TG IETI gy |

AT T WE W % 7 @e |

Where the [North-South] line perpendicular to the [Easstjéne of apsides

through the centre of the concentric meets the eccentece tthe mean velocity
itself is true and the equation of centre is extremum.

In his Vasana, Bhaskara explains this correlation between vanishing of the
velocity correction and the extrema of the correction togtametary longitudé#

FegrgaEd a1 fadimer aw: yfogae 9 9: guraws

g Tt weT | AfawaTHTETd | R o e W

A | 99 I8 WH &6 d49 Tawa = Jfadsad |

TR STATIRIATEANAR T | FAINAR TAFA T |

TEET A FOATHTTRITT AT oo -: |u—cru——|?§@-aﬁ

g afa: e ENEREIRRICIER gfd qegal 4 f&
TE WH T |

The mean rate of motion itself is exact at the points wherditieeperpendicular
[to the line of apsides], at the middle of the concentricleirmeets the eccentric

438iddhantasiromani, cited above Goladhyaya 4.39, p. 393.
4bid., Vasana on Goladhyaya 4.39.
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circle. Because, there is no correction to the rate of mqtibthose points]. Also,
because there the equation of centre [or correction to #reefdry longitudes] is
extreme. Wherever the equation of centre is maximum, theredrrection to the
velocity should be absent. Because, the rate of motion iglifference between
the planetary longitudes of today and tomorrow. The coordb the velocity is
the difference between the equations of centre. The plaegenthe correction to
the velocity vanishes, there is a change over from positivithé negative. And,
what has been stated lhalla, “the mean rate of motion is itself true when the
planet is on the intersection of the two circles [concerdrid eccentric]”, that is
incorrect. The planet does not have maximum equation ofe@nthe confluence
of the two circles.

FIGURE 5b. Equation of centre is extremum where the correc-
tion to velocity vanishes.

Bhaskara explains that when the anomaly is ninety degrees, or the plaaet
is at N along the lineC N perpendicular to the line of apsid€sE (see Figure
5b), the equation of centre is maximum. It is precisely ther tha correction to
the velocity vanishes, as it changes sign from positive tgatiee. It is incorrect
to state (as Lalla did in hi$isyadhivrddhida-tantra) that the correction to the
velocity is zero at the point where the concentric and eciemieet.

7. Surface area and volume of a sphere

In Aryabhatiya (Golapada 7), the volume of a sphere has been incorrectly es-
timated as the product of the area of a great circle by itsreguaot. Sridhara
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(c. 750) seems to have given the correct expression for theneof a sphere
(Trisatika 56), though his estimate af is fairly off the mark. Bhaskaracarya
(c. 1150) has given the correct relation between the dianrtagesurface area and
the volume of a sphere in hisilavatz:*®

JEH TRAFOaeaTauTR: &6 aq
&Twra%whtrﬁa WWW|
T ed qafl F o T8t STy
wfgeis wafa fage et a=reaH )

In a circle, the circumference multiplied by one-fourth tfiameter is the area,
which, multiplied by four, is its surface area going arounhtike a net around
a ball. This [surface area] multiplied by the diameter anddeid by six is the
volume of the sphere.

The surface area and volume of a sphere have been discusgeaiar detail
in the Siddhantasiromani (Goladhyaya 2.53-61), wherdhaskara has also pre-
sented thewpapatti or justification for the results in his commentarisana. As
regards the surface area of the sphBigjskara argues as follow4®

I FreTEaT MEHIR FAq | He JoAg I%Hd
T Fedl d TR F AN (96 00) Yo a8 HETH (45

F@l TEHIGRETGYUIEHEE SRfgaaag]- (2ay)
W%M|Wﬁaﬁﬁ T fgro-
ot FTaTae iR g
Haf=y| guT qaT=T aAAATEd: (RQY) TR AT
AT & | I STIagauATo | & qrae=a-

I AT TR F G (A9800) | T8 &I FIar 2383¢ |

g AT :
TESATTE TE( W | 79 FERdIg HEETRES aaw
Wﬂﬁamwwmﬁm&&@ém
TIF FAEA| AT TS GO0 METHIEESH | argaor

TFGINGYBEH H | TgTHIRfOaTIqeaHd &1 |

In order to make the point clear to a beginner, the teacharldltemonstrate it

on the surface of a sphere. Make a model of the earth in clayoodvand let its
circumference be 2600 minutes. From the point at the top of the sphere at an
arc-distance of ﬂ96‘h of the circumference, i.e., 225draw a circle. Similarly
draw circles with twice, thrice,... twenty-four times 23&s the arc-distances] so

45L7Tl6vati, cited above (fn. 5), verse 203, p. 79-80.
465iddhdntas’imma_ni, cited above Vasana on Goladhyaya 2.57, p. 362.
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that there will be twenty-four circles. These circles wiiMe as there radii Rsines
starting from 225 The measure [circumference] of the circle will be in prepor
tion to these radii. Here, the last circle has a circumfese2ic 600 and its radius
is 3,438. The Rsines multiplied by 2500 and divided by the radius,[338]
will give the [circumference] measure of the circles. Betweany two circles,
there is an annular region and there are twenty-four of thimmore [than 24]
Rsines are used, then there will be as many regions. In eadfe figit is cut and
spread across as a trapezium] the larger lower circle magies tas the base and
the smaller upper circle as the face and’226the altitude and the area calculated
by the usual rule: [Area is] altitude multiplied by half thens of the base and
face. The sum of all these areas is the area of half the spheree that will be
the surface area of the entire sphere. That will always balequhe product of
the diameter and the circumference.

HereBhaskara is taking the circumference to i = 21, 600, and the corre-
sponding radius is approximated Bs~ 3, 438. As shown in Figure 6, circles
are drawn parallel to the equator of the sphere, each segardatitudes by 225
This divides the northern hemisphere into 24 strips, eacthia¢h can be cut and
spread across as a trapezium. If we denote the 24 tabulaieésRs/B1, By,...
Bos, then the ared\; of j-th trapezium will be

C\ (Bj + Bj.1)
Aj = (ﬁ) 225

Therefore, the surface ar&of the sphere is estimated to be

S=2 (%) [Bl + Bo+...Boz+ (%)} (225). (68)

Now, Bhaskara states that the right hand side of the above equation redoices
2CR. This can be checked by usimthaskara’s Rsine-table.Bhaskara himself
has done the summation of the Rsines in Hisana on the succeeding versés,
where he gives another method of derivation of the area dc$phere, by cutting
the surface of the sphere into lunes. In that context, he ctesghe sum

R

B1 + Bs.... + Baz+ Bog — (5)

54233—- 1719= 52514 (69)

B
B1 + Ba.... + Bog + (%‘)

2

478iddhantasiromani, cited aboveVasana on Goladhyaya 2.58-61, p. 364.
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N

S

FIGURE 6. Surface area of a sphere.

Thus, according t®3haskara’s Rsine table

B
[Bl+-Bz4-"”+-823+-(—§f)}(22® 52514x (225

11815650
(343739)2. (70)

2

Taking this asR? = (34382, we obtain the surface area of the sphere t§%e
C
S=2(§)RZ=ZCR (71)

Of course, the grossness of the result (70) is due to thetfatthe quadrant of the
circumference was divided into only 24 bif8haskara also mentions that we may
consider dividing the circumference into many more ars;hitstead of the usual
24 divisions which are made for computing Rsine-tables.sT&ithe approach
taken in Yuktibhasa, where the circumference of the circle is divided into adarg

485 has been remarked by one of the reviewers, it is indeedjuiig the Bhaskara chose to
sum the tabular Rsines numerically, instead of making usigeofelation between Rsines and Rcosine-
differences which was well known since the time Afyabhata. In fact, the proof given inYuk-
tibhasa (cited below in fn. 49) makes use of the relation between thied® and the second order
Rsine-differences to estimate this sum.
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number,n, of equal arc-bits. IfA is the Rsine of each arc-bit, the surface area is
estimated to be

C
S= 2( ) (B1+ B2+ ....Bp)(A). (72)
Then it is shown that in the limit of large,

(B1+ Bs +....Bn)(A) ~ R, (73)

which leads to the result@R for the surface are®
As regards the volume of a spheBhaskara’s justification is much simplet?

TOHUEFGE  ATUTE TS 994%6G S
W|Wwﬁmﬁwu‘a@%wﬁ
THETATT MY TFET | GeAUToT ARy T |

LN

Ud GAwGE IR gaweiHguueRHl Iq g4
WWWWWWW

nI(j'ﬁldlnllblo H{H(‘IJ;I'H-M*(‘IGIHJ

The surface area of a sphere multiplied by its diameter avidedl by six is its
volume. Here is the justification. As many pyramids as theeeuaits in the sur-
face area with bases of unit side and altitude equal to the-diemeter should
be imagined on the surface of the sphere. The apices of tlaeniys meet at the
centre of the sphere. Then the volume of the sphere is the §tine @olumes
of the pyramids and thus our result is justified. The view thatvolume is the
product of the area times its own root, is perhaps an alien (igramata) that

has been presented bjaturavedacarya [Prthudakasvamin].

We may note that it is thelryabhatzya rule which is referred to agaramata
in the above passag8haskara’s derivation of the volume of a sphere is similar
to that of the area of a circle by approximating it as the sunthefareas of a
large numbers of triangles with their vertices at the centtieich is actually the
proof given in Yuktibhasa. In the case of the volume of a sphenéyktibhasa,
however, gives the more “standard” derivation, where theespis divided into
a large number of slices and the volume is found as the sumeo¥dglumes of
the slices—which ultimately involves estimating the sumsqtiares of natural
numbers ¢arga-sarikalita), 1% + 22 + 3% + ... 4+ n?, for largen.>!

49Ganita—yukti—bhdsd cited above, Section 7. 18 pp. 140-42, 261-63, 465—67.0akern ter-

minology, this amounts to the evaluation of the |nteg@| RsindRd = R2.
EOSzddhantaszmmanz cited above,Vasana on Goladhyaya 2.61, p. 364.
51Ganita-yukti-bhasa, cited above, Section 7.19, pp. 142-45, 26366, 468—70.
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PART Il : WORK OF THEKERALA SCHOOL

M adhava to Sankara V ariyar (c. 1350—1550CE)

8. Kerala School of Astronomy

The Kerala School of Astronomy in the medieval period, pared byMadhava

(c. 1340-1420) ofangamagrama, extended well into the 19th century as exem-
plified in the work ofSaiikaravarman (c. 1830), Raja of Kadattanadu. Only

a couple of astronomical works dfadhava ( Venvaroha and Sphutacandrapti)
seem to be extant now. Most of his celebrated mathematisabdéries—such as
the infinite series forr and the sine and cosine functions—are available only in
the form of citations in later works.

Madhava's disciple Paramesvara (c. 1380—1460) oVatasseri, is reputed to
have carried out detailed observations for over 50 yearardel number of orig-
inal works and commentaries written by him have been pubtistHowever, his
most important work on mathematics, the commentéiyarana on Lilavats of
Bhaskara Il, is yet to be published.

Nilakantha Somayaji (c. 1444-1550) of Kundagrama, disciple of
Paramesvara’s son Damodara (c. 1410-1520), is the most celebrated mem-
ber of Kerala School afteMadhava. Nilakantha has cited several important
results ofMadhava in his various works, the most prominent of them being
Tantrasangraha (c. 1500) andAryabhatiya-bhasya. In the latter work, while
commenting onGanitapada of Aryabhatiya, Nilakantha has also dealt exten-
sively with many important mathematical issues.

However, the most detailed exposition of the work of the Kef&chool, start-
ing from Madhava, and including the seminal contributions Bhramesvara,
Damodara andNilakantha, is to be found in the famous Malayalam woFkk-
tibhasa (c. 1530) ofJyesthadeva (c. 1500-1610).Jyesthadeva was also a dis-
ciple of Damodara but junior toNilakantha. The direct lineage fromladhava
continued at least tilA cyuta Pisarati (c. 1550-1621), a disciple dfesthadeva,
who wrote many important works and a couple of commentanddalayalam
also.

At the very beginning ofYuktibhasa, Jyesthadeva states that he intends to
present the rationale of the mathematical and astronom@salts and procedures
which are to be found ifantrasangraha of Nilakantha. Yuktibhasa, compris-
ing 15 chapters, is naturally divided into two parts, Matlaéios and Astronomy.
Topics in astronomy proper, so to say, are taken up for cenaiidn only from the
eighth chapter onwards, starting with a discussion on medrrae planets.
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The first seven chapters dfuktibhasa are in fact in the nature of an inde-
pendent treatise on mathematics and deal with variousgapiich are of rele-
vance to astronomy. It is here that one finds detailed demadiwsts of the re-
sults of Madhava such as the infinite series far, the arc-tangent, sine and the
cosine functions, the estimation of correction terms arir thse in the genera-
tion of faster convergent series. Demonstrations are alsaged for the classi-
cal results ofAryabhata (c. 499) onkuttakara (linear indeterminate equations),
of Brahmagupta (c. 628) on the diagonals and the area of acogahdrilat-
eral, and ofBhaskara Il (c. 1150) on the surface area and volume of a sphere.
Many of these rationales have also been presented mostheifiorm of San-
skrit verses bySankara Variyar (c. 1500—-1560) ofirkkutaveli in his commen-
tariesKriyakramakari (c. 1535) onLilavati of Bhaskara Il and Yukti-dipika on
Tantrasargraha of Nilakantha. In fact, Sankara Variyar ends his commentary
on the first chapter of untrasarigraha with the acknowledgemerit

YT TH ST goTa e HINGr FT5Y: |
q  TAgee WA 741 F: |
Whatever has been the meaning as expounded by the dobleof Parakroda

[Jyesthadeva] the same has now been stated by me for the first chapter of
Tantrasangraha.

In the following sections we shall present an overview ofdbitribution of the
Kerala School to the development of calculus (during théoplek350-1500), fol-
lowing essentially the exposition given fuktibhasa. In order to indicate some
of the concepts and methods developed by the Kerala astenspme first take
up the issue of irrationality of and the summation of infinite geometric series
as discussed bilakantha Somayaji in his Aryabhatiya-bhasya. We then con-
sider the derivation of binomial series expansion and thimaton of the sum of
integral powers of integersk 4 2K 4 ... + nk for largen, as presented ifuk-
tibhasa. These results constitute the basis for the derivationefirfinite series
for 7 due toMadhava. We shall outline this as also the very interesting work
of Madhava on the estimation of the end-correction terms and the toeunsi-
tion of ther -series to achieve faster convergence. Finally we shalhsanize the
derivation of the infinite series for Rsine and Rcosine duelf@hava.

In the final section, we shall deal with another topic whicls habearing on
calculus, but is not dealt with irvuktibhasa, namely the evaluation of the in-
stantaneous velocity of a planet. Here, we shall presenethdt ofDamodara,
as cited byNilakantha, on the instantaneous velocity of a planet which involves

52Tantmsahgmha of Nilakantha Somayajt, Ed. with Yukti-dipika of Sankara Variyar by
K. V. Sarma, Hoshiarpur 1977, p. 77. The same acknowledgeapgears at the end of the subsequent
chapters also.
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the derivative of the arc-sine function. There are indeedynaorks and com-
mentaries by later astronomers of the Kerala School, wh@thematical contri-
butions are yet to be studied in detail. We shall here citg onk result due to
Acyuta Pisarati (c. 1550-1621), a disciple dfesthadeva, on the instantaneous
velocity of a planet, which involves the evaluation of theidegive of the ratio of
two functions.

9. Nilakantha’s discussion of irrationality of =

In the context of discussing the procedure for finding theraximate square root
of a non-square number, by multiplying it by a large squanaiper (the method
given in Trisatika of Sridhara referred to earlier in Section 3.3Nilakantha
observes in hislryabhatiya-bhasya:>3

U9 FAISHAAHT Jo FTe| T FLOH T T
uN=gE: #q TH SAHUTE: | adr qT‘q’E'a'&TH FTAT
;rwmngmai’rwg:r:mﬂ|

Even if we were to proceed this way, the square root obtainédmly be ap-
proximate. The idea [that is being conveyed] is, that it isialty not possible

to exactly de-limit paricchedah) the square root of a non-square number. Pre-
cisely for this reason, multiplication by a large square stased (recommended)
in order to get as much accuracy as desired.

Regarding the choice of the large number that must be madenientioned
that one may choose any humber—as large a number as pos#ilalegives the
desired accuracyt

T FTEaal Jgdl 0+ §graGHE: Jq arddl g=ard|
mmﬁaﬁqmﬁ@ﬁﬁm|

You can multiply by whichever large number you want up to yeatisfaction
(buddhavalambhavah). Since largeness is a relative notion, it may be under-
stood that the process is an unending one.

In this contextNilakantha cites the verse given biryabhata specifying the
ratio of the circumference to the diameter of a circle (vadfier), particularly
drawing our attention to the fact thatryabhata refers to this value as “approxi-
mate”>®

sgfiryabha,tz'ya of Aryabhata, Ed. with Aryabhatiya-bhasya of Nilakantha Somayajt by
K. Sam-basiva Sastri, Trivandrum Sanskrit Series 101, Trivandrum 1930, comm Gemitapada
4,p. 14.

S4bid.

SSbid.
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As will be stated [by the author himself] — ‘this is [only] apgroximate measure
of the circumference of the circle whose diameter is tweéhgusand.’ In finding

the circumference from the diameter, a series of inferelacesnvolved. The

approximate nature of this also stems from the fact thavélires finding square
roots. All this will be explained later at the appropriatentext.

Addressing the issue—later in his commentary, as promiadige—while dis-
cussing the value of Nilakantha observes®

TRIeTaE!: TgTeE: WEfE: | ATHe:, ATaeaad
31?16%?1@@@&5334@ g4 qmaﬂg‘ JTI &d: Y:
AETAT T IQST ATHAT Geid ? IoAd| q&r
T HAFIArd | Fd: ?

The relation between the circumference and the diametelbées presented.
... Approximate: This value (62,832) has been stated asamngpproximation to
the circumference of a circle having a diameter of 20,000h{\hen has an ap-

proximate value been mentioned here instead of the actia¥alt is explained
[as follows]. Because it (the exact value) cannot be expres#/hy?

Explaining as to why the exact value cannot be preseMNddkantha contin-

ues®’

I AT Argar s fAvEga: |, a9 S
aRfe: qq: 9ragd g9 &) a4 9 HgHE: IR
fAgge: 99 AgaEr swisft grege gg; gfa
Tehdd A HGHAEE: IHE: F19 F fAagace
A | TET=IH AT T@ly Aedrada@d Ja &+aH |
faaga@ g #7170 9 &vaH 3fa H1a: |

Given a certain unit of measurementgna) in terms of which the diameter
(vyasa) specified [is just an integer and] has no [fractional] paitr-¢vayava),
the same measure when employed to specify the circumfergaeedhi) will
certainly have a [fractional] parts¢uayava) [and cannot be just an integer].
Again if in terms of certain [other] measure the circumfeeihas no [fractional]
part, then employing the same measure the diameter withiogrthave a [frac-
tional] part [and cannot be an integer]. Thus when both [tlaendter and the
circumference] are measured by the same unit, they cantioteospecified [as

56Ibid., comm. onGanitapada 10, p. 41.
>"Ibid., pp. 41-42.
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integers] without [fractional] parts. Even if you go a longy\i.e., keep on re-
ducing the measure of the unit employed), the fractiona [faispecifying one

of them] will only become very small. A situation in which tieewill be no [frac-

tional] part (i.e, both the diameter and circumference aaspecified in terms of
integers) is impossible, and this is the import [of the egpienasannal.

Evidently, whatNilakantha is trying to explain here is the incommensurability
of the circumference and the diameter of a circle. Partitylghe last line of
the above quote—whensilakantha clearly mentions that, however small you
may choose your unit of measurement to be, the two quantiflesever become
commensurate—is noteworthy.

10. Nilakantha’s discussion of the sum of an infinite geometric series

In his Aryabhatiya-bhasya, while deriving an interesting approximation for the
arc of a circle in terms of thegya (Rsine) and th&ara (Rversine),Nilakantha
presents a detailed demonstration of how to sum an infinbengéric series. The
specific geometric series that arises in this context is:

We shall now present an outline dfilakantha’s argument that gives an idea
of how the notion of limit was understood in the Indian matlaéoal tradition.

10.1. N1lakantha's approximate formula for the arc in terms of jya and sara

In Figure 7,AB is the arc whose length (assumed to be small) is to be detedmin
in terms of the chord length&D andBD. In the Indian mathematical literature,
the arcAB, the semi-chordAD and the segmer D are referred to as theipa,
gyardha and $ara respectively. As can be easily seen from the figure, thisiterm
nology arises from the fact that these geometrical objectk like a bow, a string
and an arrow respectively. Denoting themdyy, ands, the expression for the arc
given byNilakantha may be written as:

cw\/(l—k%) s+ j2 (74)
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FIGURE 7. Arc-length in terms ofya andsara.

Nilakantha's proof of the above equation has been discussed in det&klogs-
vati Amma®® It may also be mentioned that the above approximation dygtual
does not form a part of the textryabhatiya; but nevertheless it is introduced by
Nilakantha while commenting upon a verse iiryabhatiya that gives the arc

in terms of the chords in a circR. The verse that succinctly presents the above
equation (74) goes as follovfs:

T TRYEd SATEETd 98 u: Wa: |

The arc is nearly;(myah) equal to the square root of the sum of the square of
the sara added to one-thirds of it, and the square of the.

The proof of (74) given bNilakantha involves:
(1) Repeated halving of the arc-bitgpa ¢ to getcy ... ¢

(2) Finding the corresponding semi-chorgs; (j;i) and the Rversines,
Sara (§).
(3) Estimating the difference between tha andjya at each step.

If & denotes the difference between th@a andjya at thei " step, that is,

d =G — i,

587 A, Sarasvat| Amma, cited above (fn. 21), pp. 179-182.

5%-%[ ZWj'\?JT'q"Sf q W W@f |(Aryabhatiya, Ganitapada, verse 17).

GoAryabhatzya bhasya on Aryabhatrya, Clted above (fn. 50), comm. ofanitapada 12 and
17, p. 63 and p. 110. That the verse cited is from another wbhisp namely Golasara, has been
alluded to byNilakantha in both the instances of citation.
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then it is seen that this difference decreases as the sideeafapa decreases.
Having made this observatioNjlakantha proceeds with the argument that

e Generating successive values of thes ands-s is an ‘unending’ process
(na kvacidapi paryavasyati) as one can keep on dividing thepa into half
ad infinitum(anantyat vibhagasya).

e It would therefore be appropriate to proceed up to a stageenthe differ-
enced; becomes negligibles¢nyapraya) and make an ‘intelligent approxi-
mation’, to obtain the value of the difference betweeamd j approximately.

The original passage iAryabhatiya-bhasya which presents the above argument
reads as follow$?!

T SAEIAE = g FAd IIIuNHTeIE-
FHOUY  TOUETITETH  IUSATIG U SO
FHFAET J FREU gdawfa are=are e
aa:  frg=fga wew T g ey
FEAIIETH ATITE] ATISAT- T TAUTT HeAT Ty
FEAATTHNH AIIHT FITAT TaH |

10.2. Nilakantha'’s summation of the infinite geometric series

The question thalNilakantha poses as he commences his detailed discussion on
the sum of geometric series is very important and ariseg qaiturally whenever
one encounters the sum of an infinite seffés:

FY U9: qTaad adud aragyd 9 ?
How do you know that [the sum of the series] increases onlyouhat [limiting
value] and that it certainly increases up to that [limitirjue]?

Proceeding to answer the above questi¥tiakantha first states the general

result
() () () |-
alt=-)+1t-1) +{-) +...| = .
r r r r—1
Here, the left hand side is an infinite geometric series vhighsiccessive terms
being obtained by dividing by a common divisoyknown ascheda whose value

61Ibid., comm. onGanitapada 17, pp. 104-05.
62ibid., p. 106.
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is assumed to be greater than 1. He further notes that thif iedest demon-
strated by considering a particular case, say 4. In his own word<$?3

I UE T AR QUCHNTICRIRTAT:  A=arar: AT
TET: T AT F e HT= e DR ATaataT:
WHEUTE & e mard a9 QHT=Hd | J&oT
Wmmm|

Itis belng explained. Thus, in an infiniteaanta) geometrical seriest¢lya-
ccheda-parabhaga-parampara) the sum of all the infinite number of terms con-
sidered will always be equal to the value obtained by digdig a factor which is
one less than the common factor of the series. That this islsbexdemonstrated
by first considering the series obtained with one-fouctft¢ramsa-parampara).

What is intended to be demonstrated is

(O] e

Besides the multiplying factoa, it is noted that, one-fourth and one-third are
the only terms appearing in the above equatidhlakantha first defines these
numbers in terms of one-twelfth of the multipliareferred to by the wordas:.
For the sake of simplicity we take th@si to be unity.

1 1 1 1
3)(1—2 Z, 4)(1—2 §

Having defined theniYilakantha first obtains the sequence of results,

111
37 2 @3
11 1

@3 ~ @a T @as-
! 1

443) — (444 (4443’

and so on, which leads to the general result,
1 [1 /1\? 1\" 1\" /1

63bid., pp. 106-07.
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Nilakantha then goes on to present the following crucial argument tivdehe
sum of the infinite geometric series: As we sum more termsdifference be-
tween% and sum of powers 0} (as given by the right hand side of (76)), becomes
extremely small, but never zero. Only when we take all thengeof the infinite
series together do we obtain the equality

1 [(1)? 1\" 1
Z+(Z) ++(Z) +...=§. (77)
A brief extract from the text presenting the above argumeghien belowf*

g wageaman: v B & aq ) a9 =
WWWWIU o e
W‘ﬁm T Uead T IgETIue |

T I T YarEred 7 Fa6 Aqd- AFIHG,
fewArE a1 fraaAoRg a1 AT AT | ATT=ATed

foem@ee  FHURTE  UNgfoATT) 9@ waery
aigfa: STt e o e sy

Three times one-twelfth of aasi is one-fourth ¢aturamsa) [of that rasi]. Four
times that is one-thirdt¢yamsa). [Considering] four times that [one-twelfth of
the rasi] which is one-third, three by fourth of that falls short byesfourth [of
one-third of therasi]. Three-fourths of that [i.e., of4— of the rasi] which is
one-fourth of that {ryamsa), again falls short [of the same] by one-fourth of
one-fourth [of one-third of theass] ..

Since the result to be demonstrated or the process to bedawi is never
ending @nantyat) and the difference though very smadit¢sauksmatvat) [still
exists and the sum of the series] cannot be simply taken tmédtord. It seems
that the process is incomplete since always something nsrbacause of its never
ending nature. In fact, since in all the problems involvimgfifite] series, by
bringing in all the terms and placing them together, the @ssavould [in princi-
ple] become complete, here, in the mathematics involvipgaed multiplication
of one-fourth, a similar conclusion may be drawn.

641bid., p. 107.
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11. Derivation of binomial series expansion

Yuktibhasa presents a very interesting derivation of the binomialesefor (1 +
x)~1 by making iterative substitutions in an algebraic identitie method given
in the text may be summarized as follofis.

Consider the produ& (g) where some quantity is multiplied by the multi-
plier ¢, and divided by the divisdo. Here,a is calledgunya, ¢ the gunaka and
b the hara, which are all assumed to be positive. Now the above prodauthe
rewritten as:

a(%):a—a(bgc). (78)

In the expressiora(b—gc) in (78) above, if we want to replace the division by
(the divisor) by division byc (the multiplier), then we have to make a subtractive
correction (callediodhya-phala) which amounts to the following equation.

Jb-0 _ _b-0 (aao—c) . (b—c)).

b c c b (79)

Now, in the second term (inside parenthesis) in (79)—whiclvhat we referred
to assodhya-phala, which literally means a quantity to be subtracted—if weiaga
replace the division bip by division byc, then we have to employ the relation (79)
once again to get another subtractive term

c [ (b—20) (b—c) (b-0)
aB = a—_a c —a - X% }
A a(b—c)_a(b—c)x(b—c)xg}
L c c o b
[ b-¢ [ (b-0? ( (b-0c? (b-0
= a—|a c —[a =2 —(a =2 X 5 )]].(80)

Here, the quantitysl(b;z")2 is called dvitiya-phala or simply dvitiya and the

one subtracted from that i&itiya-sodhya-phala. If we carry out the same set of
operations, then'" sodhya-phala subtracted from then!" term will be of the form

m m
a[(b—C)} _a[(b—C)} ,b-9

[ [ b

65Ganita—yukti—bhd$d, cited above, \Vol. |, Sections 6.3.3—-4, pp. 54-58, 188—395;-378.
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Since the successiviedhya-phalas are subtracted from their immediately pre-
ceding term, we will end up with a series in which all the oddre (leaving
out thegunya, a) are negative and the even ones positive. Thus, after taking
Sodhya-phalas we get

2
ac = a—aw-l—a[—(b_c)} —...+(—1)ma[—(b_c)}m
b c c .

Cami, [ (B=0 7" (b—c)
+(=n™ a[ c i| b (81)

Regarding the question of termination of the process, hahextsYuktibhasa
and Kriyakramakari clearly mention that logically there is no end to the process
of generatingfodhya-phalas. We may thus write our result &§:

2 m—1
aE = a—a(b_c)+a|:(b_c)} —...+(—1)m_1a[w]
b c c c

_ m
+(-D)Ma [(b—cc)} o (82)

It is also noted that the process may be terminated aftenpastained the
desired accuracy by neglecting the subsequealas as their magnitudes become
smaller and smaller. In fact(riyakramakart explicitly mentions the condition
under which the succeedingalas will become smaller and small&f:

Uq Hg: Fo A sty g e T qaAre: | oy
ATIEUE GEHATHTITE] UTETAT-IUed ®aTaa- Y-
-_-h'qT[l SeITT R AT Y cd (;[ LlU JE ?ﬁ W:f
FERSIRY

Thus, even if we keep finding thehalas repeatedly, logically there is no end
to the process. Even then, having carried on the processetddkired accu-
racy (yavadapeksam suksmatamapadya), one should terminate computing
the phalas by [simply] neglecting the terms that may be obtained furthesca-
tyanyupeksya). Here, the succeedinghalas will become smaller and smaller

only when the difference between thenaka and hara is smaller thamyunaka
[thatis(b ~¢) < c].

66;¢ may be noted that if we se(PE—Cl =X, theng = (1ix) . Hence, the series (82) is none other
than the well known binomial series
a
1+x

—a—ax+axt— ... +(=D)Max"+...,

which is convergent for1 < x < 1.
67Km‘ydkmmakam‘on Lilavatz, cited above (fn. 14), comm. on verse 199, p. 385.
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12. Estimation of sums ofl + 2¢ + ... nk for large n

As mentioned in section 4.Aryabhata has given the explicit formulae for the
summation of squares and cubes of integers. The word entloyé¢he In-
dian mathematical literature for summationsigikalita. The formulae given by
Aryabhata for the sarikalitas are as follows:

1
§9 = 1424 4n="0FD
2 = 12+22+---+n2=w
1 2
agB) = 13+23+_'_+n3:|:n(n7;‘):| . ©3)

From these, it is easy to estimate these sums whenarge. Yuktibhasa gives a
general method of estimating tkema-ghata-sankalita

SO =1k 2k 4. K, (84)

whenn is large. The text presents a general method of estimatibichvdoes not
make use of the actual value of the sum. In fact, the same anguisirepeated
even fork = 1, 2, 3, although the result of summation is well known in these
cases.

12.1. The sum of natural numbers Mula-sankalita)

Yuktibhasa takes up the discussion @arnkalitas in the context of evaluating the
circumference of a circle which is conceived to be inscribed square. It is
half the side of this square that is being referred to by thedwiduja in both
the citations as well as explanations offered below. Hathefside of the square
(equal to the radius) is divided intoequal bits, known asghuja-khandas. It is
thesebhuja-khandas (L), 2(F)--- whose powers are summed.

To start with, Yuktibhasa discusses just the basic summatiobbija-khandas
called Mula-sankalita. \We now cite the following from the translation &fuk-
tibhasa:58

Now is described the methods of making the summations (ezfeto in the ear-
lier sections). At first, the simple arithmetical progressikevala-sankalita) is
described. This is followed by the summation of the prodettsqual numbers
(squares). ...

Here, in thismila-sankalita (basic arithmetical progression), the firbdluja is

68G anita-yukti-bhasa, cited above, Section 6.4, pp. 61-67, 192-97, 382-88.
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equal to the radius. The term before that will be one segmigntr{da) less. The
next one will be two segments less. Here, if all the terbis.{as) had been equal
to the radius, the result of the summation would be obtainethbltiplying the
radius by the number dfhujas. However, here, only onéhuja is equal to the
radius. And, from thabhuja, those associated with the smaller hypotenuses are
less by one segment each, in order. Now, suppose the radhes @bthe same
number of units as the number of segments to which it has higeted, in order

to facilitate remembering (their number). Then, the nundssociated with the
penultimatebhuja will be less by one (from the number of units in the radius);
the number of the next one, will be less by two from the numlbemits in the
radius. This reduction (in the number of segments) will éase by one (at each
step). The last reduction will practically be equal to theaswgre of the radius, for
it will be less only by one segment. In other words, when tlticgons are all
added, the sum thereof will practicallpfayena) be equal to the summation of
the series from 1 to the number of units in the radius; it walless only by one
radius length. Hence, the summation will be equal to the ycbdf the number
of units in the radius with the number of segments plus ond,diwided by 2.
The summation of all théhujas of the different hypotenuses is calléduja-
sankalita.

Now, the smaller the segments, the more accuraiésina) will be the result.
Hence, do the summation also by taking each segment as swaallaom ¢nu).
Here, if it (namely, thebhuja or the radius) is divided int@arardha (a very
large number) parts, to thighuja obtained by multiplying byparardha add one
part in parardha and multiply by the radius and divide by 2, and then divide by
parardha. For, the result will practically be the square of the radiisded by
two. ...

The first summation, théhuja-sarikalita, may be written in the reverse order
from the finalbhuja to the firstbhuja as

s = (M) + (@) b (h). (85)

Now, conceive of théhuja-khanda % as being infinitesimaldnv) and at the same
time as of unit-measure-{pa), so that the radius will be the measuremfthe
pada, or the number of terms. Then

SP=n4+M-1+..+1 (86)

If each of the terms were of the measure of radinsthen the sum would be
nothing butn?, the square of the radius. But only the first term is of the me=as
of radius, the next is deficient by one segméniuda), the next by two segments
and so on till the last term which is deficient by an amount etpsdius-minus-
one segment. In other words,

SY = n+[n-1+[n-2]....+[N—(—2)]+[n—(n—1)]
nn—[1+2+..+(n-1)] (87)
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Whenn is very large, the quantity to be subtracted frofiis practically prayena)
the same a§(11), thus leading to the estimate

& ~ niogd, 8)
1) n?
or P =~ > (89)

It is stated that the result is more accurate, when the siteeafegments are small
(or equivalently, the value of is large)®°

If instead of making the approximation as in (88), we proogid (87) as it is,
we getSﬁl) =n?— (3(11) — n), which leads to the well-known exact value of the
sum of the firsh natural numbers

sp = "0 (90)

With the convention that thﬁ- is of unit-measure, the above estimate (89) is stated
in the form that théhuja-sankalita is half the square of the radius.

12.2. Summation of squares Varga-sarnkalita)

We now cite the following from the translation afuktibhasa:’®

Now is explained the summation of squarearfga-sankalita). Obviously, the
squares of théhujas, which are summed up above, are #ifaijas each multi-
plied by itself. Here, if theohujas which are all multipliers, had all been equal to
the radius, their sumgs@nkalita derived above), multiplied by the radius would
have been the summation of their squares. Here, however,omel multiplier
happens to be equal to the radius, and that is the last oneoriEhieefore that will
have the number of segments one less than in the radius. éHiéieat, (i.e., the
second one), is multiplied by the radius, it would mean timet multiplied by the
penultimatebhuja would have been the increase in the summation of the squares.
Then (the segment) next below is the third. That will be I&sstthe radius by
two segments. If that is multiplied by the radius, it will nmethat, the summa-
tion of the squares will increase by the product of dheija by two (segments).

In this manner, the summation in which the multiplicatiordéne by the radius
(instead of thebhujas) would be larger than the summation of squares by terms

69 nkara Variyar also emphasizes the same idea, in his discussion of the agistimof
sankalitas in his commentaryKriyakramakari on Lilavati (cited above (fn. 14), comm. on verse
199, p. 382.):

GUSHITeU Hoid &oe ardT I 7|
Only when the segment is smalii{andasyalpatve) the result obtained would be
accurate.

70Ganita—yukti—bhd$d, cited above, Section 6.4, pp. 61-67, 192-97, 382-88.
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which involve the successively smallekiujas multiplied by successively higher
numbers. If (all these additions) are duly subtracted froensummation where
the radius is used as the multiplier, the summation of sguargga-sankalita)
will result.

Now, thebhuja next to the east-west line is less than the radius by one @egym
So if all the excesses are summed up and added, it would barthaation of the
basic summationrtala-sankalita-sankalita). Because, the sums of the sum-
mations is verily the ‘summation of summationsaikalita-sankalita). There,
the last sum has (the summation of) all #ifeujas. The penultimate sum is next
lower summation to the last. This penultimate sum is the satiom of all the
bhujas except the lasbhuja. Next to it is the third sum which is the sum of all
the bhujas except the last two. Thus, each sum of titeijas commencing from
any bhugja which is taken to be the last one in the series, will be lessigbbuja
from the sum (of theébhujas) before that.

Thus, the longedihujais included only in one sum. But thigvuja next lower
than the last §huja) is included both in the last sum and also in the next lower
sum. Thebhugas below that are included in the three, four etc. sums below it.
Hence, it would result that the successively smalteijas commencing from the
one next to the last, which have been multiplied by numbensngencing from 1
and added together, would be summation of summatiems$ialita-sankalita).
Now, it has been stated earlier that the summatiamkalita) of (the segments
constituting) abhuja which has been very minutely divided, will be equal to
half the square of the lasthuja. Hence, it follows that, in order to obtain the
summation §ankalita) of the bhujas ending in any particulabhuja, we will
have to square each of tléujas and halve it. Thus, the summation of summa-
tions (sarikalita-sankalita) would be half the summation of the squares of all the
bhugjas. In other words, half the summation of the squares is the satftomof the
basic summation. So, when the summation is multiplied byraléus, it would
be one and a half times the summation of the squares. Thisdadbe expressed
by stating that this contains half more of the summation ofases. Therefore,
when the square of the radius divided by two is multiplied iy tadius and one-
third of it subtracted from it, the remainder will be onerthof the whole. Thus it
follows that one-third of the cube of the radius will be thensnation of squares
(varga-sankalita).

With the same convention thﬁtis the measure of the unit, théuja-varga-
sankalita (the sum of the squares of théu;jas) will be

S?P =n?+(n-1>2+..+1% (91)
In above expression, eadhuja is multiplied by itself. If instead, we consider that

eachbhuja is multiplied by the radiusr(in our units), then that would give raise
to the sum

nin+ (-1 +..+1]=nsV. (92)
This sum is exceeds théuja-varga-sankalita by the amount

NSV —S® =1(n-1)+2.(n-2)+3.(n=3) +...+ (n—1).L
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This may be written in the form

n§V-§2=n-D+M-2)+(-3) +... +1
+N—2)+(—=3) +... +1
+(—=3) +... +1
+.. (93)
Thus,
ngP—s? =g +5Y 45D 4. (94)

The right hand side of (94) is called therikalita-sarikalita (Or sankalitaikya),

the repeated sum of the surﬁ@ (here takeninthe ordér=n—1, n—2,...1).

These are defined also Byuikara Variyar in Kriyakramakari as follows?!

TEfod  TTRaRETT H\:-l:-ll g gd e
Wﬁwmﬁéﬁm@mﬁmﬁ

The sum of the summations is called @sikalita-sankalita. Of them the last
sankalita is the sum all thebhujas. The penultimatesarikalita is the sum of
all the bhujas other than the last one. Thenkalita of the one preceding the
penultimate is the sum of thihujas ending with that. Thus, all the preceding
sankalitas will fall short by abhuja from the succeedingankalita.

For largen, we have already estimated in (89) tlﬁ*) ~ ”—22 Thus, for largen

nsd - 52 ~ (n—1)2+ (n—2)2+ (n—3)?

5 5 5t (95)

Thus, the right hand side of (94) (ternkalita-sankalita or the excess orhé,l)
@)
oversﬁz)) is essentially% for largen, so that we obtain

(2)
n§Y — §? ~ 317 (96)

71Km‘ydkmmakam‘on Lilavatz, cited above (fn. 14), comm. on verse 199, pp. 382-83.
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Again, using the earlier estimate (89) 13(11), we obtain the result

3
@ T

Thusbhuja-varga-sankalita is one-third the cube of the radius.

12.3. Sama-ghata-sankalita

We now cite the following from the translation dfuktibhasa:’?

Now, the square of the square (of a number) is multiplied bglft it is called
sama-panca-ghata (number multiplied by itself five times). The successive
higher order summations are calledma-pancadi-ghata-sankalita (and will

be the summations of powers of five and above). Among theneiSthmmation
(sankalita) of powers of some order is multiplied by the radius, thengtaeluct

is the summation of summationsafikalita-sankalita) of the (powers of
the) multiplicand (of the given order), together with thersnation of powers
(sama-ghata-sankalita) of the next order. Hence, to derive the summation of
the successive higher powers: Multiply each summation byahius. Divide it
by the next higher number and subtract the result from thexsation got before.
The result will be the required summation to the higher order

Thus, divide by two the square of the radius. If it is the cub#he radius, divide
by three. If it is the radius raised to the power of four, dévidy four. If it is
(the radius) raised to the power of five, divide by five. In tmianner, for powers
rising one by one, divide by numbers increasing one by one.ré&sults will be,
in order, the summations of powers of numbeista-ghata-sankalita). Here,
the basic summation is obtained from the square, the summatisquares from
the cube, the summation of cubes from the square of the sgumatieis manner,
if the numbers are multiplied by themselves a certain nurobgmes (i.e., raised
to a certain degree) and divided by the same number, thabe/ihe summation
of the order one below that. Thus (has been stated) the methderiving the
summations of (natural) numbers, (their) squares etc.

(97)

In the case of a generadmaghata-sankalita, (Summation of equal powers) given

by

SO =k (n—1k+... +1%

(98)

the procedure followed to estimate its behavior for lange essentially the same
as that followed in the case ofirgasankalita. We first compute the excess of
né,k_l) overSﬁk) to be asarikalita-sankalita or repeated sum of the lower order

72Ganita-yukti-bhd§d, cited above, Section 6.4, pp. 61-67, 192-97, 382-88.
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sankalitas S(k_l):
ngb g = P L P P (99)
If the lower ordersarikalita Sﬁk_l) has already been estimated to be, say,
nk
U~ (100)

then, the above relation (99) lead$%o

_ n—1% (-=2K -3k
n$k 1)_Sgk) ~ - + - + 5 +

(%) sk, (101)

Rewriting the above equation we héte

1
Wangkb - (Z) s 102
§9~ns, (k) S (102)
Using (100), we obtain the estimate
© nk+1
~ . 103
S K+ D) (103)

73as one of the reviewers has pointed out, this argument lgaidir{101) is indeed similar to the
derivation of the following relation, which is based on théerchange of order in iterated integrals:

1 1 1
/0(1—x)xk_1dx = /Oxk_l/ dy dx= /y/ xk= ldxdy / y =—dy.
X

74ps Sankara Variyar states in hisKriyakramakari on Lilavatz (cited above (fn. 14), p. 383):

mﬁm%ﬁmmm%ﬁwwﬁm
g #1aq gfa fem)

Therefore it is established that, for obtaining the sum efrtbxt order the previ-
ous sum, has to be multiplied by the radius and the presentdivided by one
more than the previous [order], has to be diminished [froat gnoduct].
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12.4. Repeated summations§arkalita-sankalita)

After having estimated the sum of powers of natural numbkergsighata-sankalita
Yuktibhasa goes on to derive an estimate for the repeated summatioitsdlita-
sankalita or sankalitaikya Of varasankalita) of the natural number,2, - - - | n.’>

Now, are explained the first, second and further summatidhs: first summa-
tion (adya-sankalita) is the basic summationrula-sankalita) itself. It has
already been stated (that this is) half the product of theusgof the number of
terms pada-vargardha). The seconddvitiya-sarnkalita) is the summation of
the basic summationn{ula-sankalitaikya). It has been stated earlier that it is
equal to half the summation of squares. And that will be drtir®f the cube of
the number of terms.

Now, the third summation: For this, take the second summatiothe last term
(antya); subtract one from the number of terms, and calculate thensation
of summations as before. Treat this as the penultimate. $tbtract two from
the number of terms and calculate the summation of sumnsatimat will be the
next lower term. In order to calculate the summation of sutiona of numbers in
the descending order, the sums of one-sixths of the cubasnabers in descend-
ing order would have to be calculated. That will be the sunmnadf one-sixth
of the cubes. And that will be one-sixth of the summation dfe=i As has been
enunciated earlier, the summation of cubes is one-fouglsguare of the square.
Hence, one-sixth of one-fourth the square of the squarebsilthe summation
of one-sixth of the cubes. Hence, one-twenty-fourth of tease of the square
will be the summation of one-sixth of the cubes. Then, thetfosummation will
be, according to the above principle, the summation of aremty-fourths of the
square of squares. This will also be equal to one-twentyttioaf one-fifth of
the fifth power. Hence, when the number of terms has beenptiedtiby itself
a certain number of times, (i.e., raised to a certain degaee) divided by the
product of one, two, three etc. up to that index number, tselrevill be the
summation up to that index number amongst the first, secandseimmations
(adya-dvitiyadi-sankalita).

The first summationddya-sarikalita) Vrﬁl) is just themula-sarikalita or the
basic summation of natural numbers, which has already b&tenated in (89)

VO =g = nein-1)+n-2)+...+1
n2
~—. 104
’ (104)
The second summatiodditiya-sarikalita Or sarikalita-sankalita or sankalitaikya)
is given by
Vrgz) = Vn(l) + Vn(i)l + Vn(i)z +...

SU+SY +sY 4 (105)

"SGanita-yukti-bhasa, cited above, Section 6.4, pp. 61-67, 192-97, 382-88.
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As was done earlier, this second summation can be estimated the estimate
(89) for StV

n (n—-1%2 (n-2)7%
2Tt

V@ (106)

Therefore
v@ ~ 1 (2)
I S7. (107)

Using the earlier estimate (97) fsﬁz), we get an estimate for th&itiya-sankalita

n3

) A
vn<>~6.

(108)
Now the next repeated summation can be found in the same way

v = vP4v® 4v@
R =13 n-=2)3
"on-1 (-2
6 6 6
1 @

6

n4

24’

2

2

2

(109)

It is noted that proceeding this way we can estimate repeamdnationvn(k) of
orderk, for largen, to be/®

VI = veb D vy
nk+1
123...(k+1)

2

(110)

"6These are again estimates for largeAs mentioned in Section 4, exact expressions for the first
two summationsvrgl) andv,SZ), are given inAryabhatiya, Ganitapada21; and the exact expression
for the k-th order repeated summaticvﬁk) has been given (under the naméra-sankalita), by

Narayana Pandita (c. 1350) in hisGanitakaumudi, 3.19. This exact expression ﬂv’fﬁk) is also
noted in Section 7.5.3 oYuktibhasa.
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13. Derivation of the Madhava series forz

The following accurate value af (correctto 11 decimal places), givenkladhava,
has been cited byilakantha in his Aryabhatiya-bhasya and bySankara Variyar
in his Kriyakramakart.”’

[REREERS I RIMEIENCEESEICEILE
FaferadfER grafawr aRRETAEE ST |

Ther value given above is:

2827433388233

9% 101 = 3.141592653592 (111)
X

The 13 digit number appearing in the numerator has beenfmgkasingbhuta-
sankhya system, whereas the denominator is specified by word nusiéral

13.1. Infinite series forz

The infinite series for attributed to Madhava is cited Bynkara Variyar in his
commentarie(riyakramakart and Yukti-dipika. Madhava's verse quoted runs
as follows?®

w@mﬁﬁmmmﬁgm
@ qF FH FAq|

The diameter multiplied by four and divided by unity [is faland saved]. Again
the products of the diameter and four are divided by the oddbmus like three,
five, etc., and the results are subtracted and added in dalérd earlier result
saved].

The series given by the verse may be represented as

1 1 1
Paridhi = 4 x Vyasa X (1— e e ) (112)

77Aryabha.tiya—bhd§ya on Aryabhatrya, cited above (fn. 53), comm. aflanitapada 10, p. 42;
Kriyakramakari on Lilavatz, cited above (fn. 14), comm. on verse 199, p. 377.

78In the bhuta-sankhya system,vibudha =33, netra =2, gaja =8, ahi =8, hutasana =3,
triguna =3, veda =4, bha =27, varana =8, bahu =2. In word numeralspikharva represents 9.
Hence,nava-nikharva =9 x 101,

79op. cit., p. 379.
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The wordsparidhi andvyasa®® in the above equation refer to the circumference
and diameter respectively. Hence the equation may be tewats

zz(_hl_h... ) (113)

4 3 5 7
jT

Blown up version
of this quadrant

AiZ

fe) S

FIGURE 8. Geometrical construction used in the proof of the
infinite series forr.

We shall now present the derivation of the above result anedtin Yuk-
tibhasa of Jyesthadeva and Kriyakramakari of Sankara Variyar. For this pur-
pose, let us consider the quadr&nky P, S of the square circumscribing the given
circle (see Figure 8). Divide the sidg P, into n equal partsi{ very large).PoP;’'s

80NT1akanpha, in his Aryabhatiya-bhasya, presents the etymological derivation of the
word wvyasa as ‘the one which splits the circle into two halveSaTE =T % qd

Wﬁ | (Aryabhatzya-bhasya, cited above (fn. 53), comm. ofanitapada 11, p. 43).
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are thebhujas andO R’s are thekarnas denoted bykj. The points of intersection
of thesekarnas and the circle are marked #gs.

The bhujas PoP;, the karnas ki and the east-west lin@ Py form right-angled
triangles whose hypotenuses are given by

ir\?
=124 (F) , (114)
wherer is the radius of the circle.

The feet of perpendiculars from the poimis_1 and P,_1 along theit" karna
are denoted byB; andCj. The trianglesOR_1C; and O A _1B; are similar.
Hence,

Ai—1Bi  P_1Gi

= ) 115
OA_1 OR4 (115)
Similarly trianglesP, _1C; P, andPyO R, are similar. Hence,
P -1Ci OR
-, 116
P-1PR OR (116)

From these two relations we have,

OA_1.0R.P_1PR
OR_1.0R
OA-:  OR
OR-1 OR

- O in
- O(5)

Itis then noted that whemis large, the Rsined,_1B;j can be taken as the arc-bits
themselves.

A_1B =

= PR_1Ph x

TRfEUS ST - T

i.e., Ai_1B — A_1A .

Thus,%th of the circumference of the circle can be written as sunhefdon-
tributions given by (117). That is

C r r2 r2 r2 re
5= 0|(5)* () ()~ ()] @
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Though this is the expression that actually needs to be ateduthe text men-
tions that there may not be much difference in approximaitimy either of the
following expressions:

CIRIGRON RN I
56666 6]

It can be easily seen that

|:E:| < E < [Ei| ) (121)
8 lright 8 8 Jieft

In other words, though the actual value of the circumferdiesen between the
values given by (120) and (119) what is being said is thak&tiéll not be much
difference if we divide by the square of either of thernas rather than by the
product of two successive ones. Actually, the differendevben (120) and (119)

n 2 ’ ’

)&
- 00

Evidently this difference approaches zerorabecomes very large, as noted in
both the textsYuktibhasa and Kriyakramakari.

The terms in (120) are evaluated using #éhya-phala technique (binomial
series, discussed earlier in Section 11) and each one ofritenbe re-written in

the fornf!
rfr2\ _r r k? —r2 rk?—r2 2 (123)
nlie)~n a7z ) el T

SN2
81 may be noted that this series is convergent skfce: r2 4+ (%) and 0< (ki2 — r2) <r2

or

fori <n.
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Using (114) and (123) in (120), we obtain:

- .:1(%) rz;(%)z (124)
_ Z[fﬂ_; (52)2 A (i)z . (125)
_ I(zrﬁl)[1+1+...+1]

-GOE|EG) 6]

O G) 6]

-G E[E ) 6]

+... (126)

Each of the terms in (126) is a sum of resultddla-yoga) which we need to
estimate whem is very large, and we have a series of themaa-parampara)
which are alternatively positive and negative. Clearlyftrst term is just the sum
of the bhuja-khandas.

The bhujas themselves are given by the integral multiplesbdfija-khanda,
namely,%, 2%, e ”—nr In the series expression for the circumference given above
we thus have thearikalitas or summations of even powers of theujas, such

2
as thebhuja-varga-sankalita, (%)2 + (2%) + .+ (%)2, bhuja-varga-varga-

sanikalita, (5)* + (2%)4 + oo+ (2% and so on.

If we take out the powers dbhuja-khanda rﬁ the summations involved are
those of even powers of the natural numbers, nam@blyckottara-varga-
sankalita, 12 + 22 + ... + n?, edadyekottara-varga-varga-sankalita, 14+ 24+
...+n* and so on.



Development of Calculus in India 261

Now, recalling the estimates that were obtained earlietttiesesarnkalitas,
whenn is large,

n ‘ nk+1
i 127
ZI k+1° (127)

i=1
we arrive at the restiit

C 1 1 1
1oz 24 ... 128
8 r( 3ts =77 ) (128)

which is same as (112).

14. Derivation of end-correction terms (Antya-samskara)

It is well known that the series given by (112) fgris an extremely slowly con-
verging series. It is so slow that even for obtaining the e@adfiz correct to 2
decimal places one has to find the sum of hundreds of termsangkfting it
correct to 4-5 decimal places we need to consider milliontewhs. Madhava
seems to have found an ingenious way to circumvent this enobI he technique
employed byMadhava is known asantya-samskara. The nomenclature stems
from the fact that a correctiosqmskara) is applied towards the end{ta) of the
series, when it is terminated after considering only a aertamber of terms from
the beginning.

14.1. The criterion for antya-samskara to yield accurate result

The discussion onntya-samskarain both Yuktibhasa and Kriyakramakari com-
mences with the question:

How is it that one obtains the value of the circumference racoeirately by doing
antya-samskara, instead of repeatedly dividing by odd numbefS?

82In modern terminology, the above derivation amounts to taduation of the following integral

c . < 2 1 od
Eﬂ'%é(%) JW Z’/o 1+sz-
- n
8y U HeldUHUgeud & IRy AHHaEH A=d-

WUT m | W?f |... (Kriyakramakari on Lilavats, cited above (fn. 14),

comm. on verse 199, p. 386.)
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The argument adduced in favor of terminating the seriesyatlarired term, still
ensuring the accuracy, is as follows. Let the seriegfdie written as

11 1 :
T4 4(=)%

a et (129)
4 375 7 ’

p—2 ap-2

Where#_2 is the correction term applied after odd denomingicr 2. On the
other hand, if the correction terdsg, is applied after the odd denominaterthen

1 1
Z=1- (=) + (-1 = (130)

+ (=)
— : -

+

ol e
~ie

Wl

If the correction terms indeed lead to the exact result, thath the series (129)
and (130) should yield the same result. That is,

1 1 1 1 1 1
—— =—_-=  or — 4 ===, (131)
dp-2 P dp-2 ap P

is the criterion that must be satisfied for the end-correctiotya-samskara) to
lead to the exact result.

14.2. Successive approximations to get more accurate coaotgon-terms

The criterion given by (131) is trivially satisfied when weodseap > = ap =
2p. However, this value @ cannot be assigned to both the correction-div&brs
ap—2 andap because both the corrections should follow the same rulat igh

ap-2=2p, = ap=2(p+2

or, ap=2p, = ap-2=2(p-—2).
We can, however, have bo#ty_, anda, close to 2 by takingap_» = 2p — 2
andap = 2p+ 2, as there will always persist this much difference betwgen?

and p when they are doubled. Hence, the first (order) estimateeottirection
divisor is given as, “double the even number above the ladtradnber divisor

p"!

ap =2(p+1). (132)
But, it can be seen right away that, with this value of the ection divisor, the
condition for accuracy (131), stated above, is not exacttised. Therefore a

84By the term correction-divisorsgmskara-haraka) is meant the divisor of the correction term.
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measure of inaccuracytfaulya) E(p) is introduced
1 1 1
E(p) = [——i——} - —. (133)
ap_z ap p
Now, since the error cannot be eliminated, the objective ifind the correction

denominatorsy, such that the inaccurady(p) is minimised. When we set, =
2(p + 1), the inaccuracy will be

1 1 1
E _ =
(P) [(Zp—2>+<2p+2>} o

= 3; . (134)
(p°—p)
This estimate of the inaccurady, being positive, shows that the correction has
been over done and hence there has to be a reduction in tleeton: This means
that the correction-divisor has to be increased. If we &@ke= 2p + 3, thereby
leading toap_» = 2p — 1, we have

R i
= @p-0 " @p+a] P

_ (-2p+3
- (4p+4p*-3p) (139

Now, the inaccuracy happens to be negative. But, more iraptlyt it has a term
proportional top in the numerator. Hence, for large E(p) given by (135) varies
inversely agp?, while for the divisor given by (132 (p) as given by (134) varied
inversely asp3.2°

From (134) and (135) it is obvious that, if we want to redueeittaccuracy and
thereby obtain a better correction, then a number less tthas 1o be added to the
correction-divisor (132) given above. If we try addingpa (unity) divided by the

correction divisor itself, i.e., if we sety = 2p4-2+ Wiz), the contributions from

the correction-divisors get multiplied essentially p). Hence, to get rid of the
higher order contributions, we need an extra factor of 4ctiaill be achieved if

we take the correction divisor to be
_ (2p+22%+4
2p+2 (2p+2)

ap=(2p+2)+ (136)

89;¢ may be noted that among all possible correction divisdith® typeap = 2p 4+ m, wherem
is an integer, the choice ai = 2 is optimal, as in all other cases there will arise a term pridgnal to
p in the numerator of the inaccura& p).
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Then, correspondingly, we have

(2p—2)2+4
ap—2=02p—2)+ = 137
2= P G T @2 s
We can then calculate the inaccuracy to be
1 1 1
E(p) = — — - (5)
2p-2 2p+2
(2Pt 5y P42t
_ [ @ (16p* + 64)
| @dpt+16) |  4p(4p*+ 16)
—4
= —. 138
(p° +4p) (139)

Clearly, thesthaulya with this (second order) correction divisor has improved
considerably, in that it is now proportional to the invergehfpower of the odd
number2®

At this stage, we may display the result obtained for theucnference with the
correction term as follows. If only the first order correctid 32) is employed, we
have

c=4d[1—%+...+(—1)mz”—:+(—1)@3”w12)] (139)
If the second order correction (136) is taken into accounthave
C = 4d 1—%+...+(—1)“'z”—:+(—1)“'¥” = 2
i 2p+2)+ m
i (p+1)
— 4 1—%+...+(—1)“’—5”—;+(—1)“’—3”(erfZ)zJr1 (140)

86;¢ may be noted that if we take any other correction-diviagr= 2p + 2 + ﬁ, wherem is

an integer, we will end up having a contribution proportidnapz in the numerator of the inaccuracy
E(p), unlessm = 4. Thus the above form (136) is the optimal second order ehoicthe correction-
divisor.
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The verse due tdladhava that we cited earlier as defining the infinite series for
7 is, in fact, the first of a group of four verses that presentsiwges along with
the above end-correctidH.

T qINUfEd TUgd A ErRIHEd |
T FHTT FArd|

FrafferaagmEge @
Wﬁmfﬁﬁwmm|

T FATATET THA T TEe UTS=T STl
TG TULAT g ATHTfETa: YA
TRETHT 0 Fd U= &9 Jd &I |

el URMY: GaHT qgFedl aorarsiayen: &

The diameter multiplied by four and divided by unity. Agairetproducts of
the diameter and four are divided by the odd numbers likeettinee, etc., and the
results are subtracted and added in order.

Take half of the succeeding even number as the multipler aheter [odd]
number the division process is stopped, because of bore@lbmsquare of that
[even number] added to unity is the divisor. Their ratio lm&¢ multiplied by
the product of the diameter and four as earlier.

The result obtained has to be added if the earlier term [irs#nes] has been
subtracted and subtracted if the earlier term has been adtesl resulting cir-
cumference is very accurate; in fact more accurate thanrkendich may be
obtained by continuing the division process [with large bemof terms in the
series].

Continuing this process furtheYuktibhasa presents the next order correction-
term which is said to be even more acculéte:

I GHUGRGAN: J&! 0 § gq g=: |
IOl €Uga: GHYgeGed! Hdg a1 |

At the end, [i.e., after terminating the series at some paipply the correction
term with] the multiplier being square of half of the [nextjem number plus 1,
and the divisor being four times the same multiplier with tledl and multiplied
by half the even number.

87Km‘ydkmmakam‘on Lilavatz, cited above (fn. 14), comm. on verse 199, p. 379.

88Ganita—yukti—bhd$d, cited above, p. 82; Also cited ifvukti-dipika on Tantrasangraha,
cited above (fn. 49), comm. on verse 2.1, p. 103.
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In other word<®

p+1)°
. (557) +1
= 1
% [(p+1)2+4+1](%)
_ i . (141)
(2p+2) + -
2p+ 24—
Ptet o2

Hence, a much better approximation fpiis:*

p+1\?
2T) 4
(2)+

[(p+1)2+4+1](%1).

1 1
— - (142)

8%The inaccuracy osthaulya associated with this correction can be calculated to be

2304

E(p) = .
® (64p7 + 448p5 4 1792p3 — 2304p)

The inaccuracy now is proportional to the inverse seventiep@f the odd-number. Again it can be
shown that the number 16 in (141) is optimally chosen, indmgtother choice would introduce a term
proportional top? in the numerator of(p), given above.

In fact, it has been noted by C. T. Rajagopal and M. S. Ranggitiz D. T. Whiteside has shown
(personal communication of D. T. Whiteside cited in C. T.&g@pal and M. S. Rangachari, ‘On an
untapped source of medieval Kerala mathematics’, ArchHist. Sc. 35(2), 89-102, 1978), that the
end correction-term can be exactly represented by theafimipcontinued fraction

1 1

22
P oep+r2+

42
62
2p+2)+...

2p+2) +

@2p+2) +

90;¢ may be noted that this correction term leads to a value,efhich is accurate up to 11 decimal
places, when we merely evaluate terms up te 50 in the series (142). Incidentally the valuemof

given in the rulevibudhanetra..., attributed to M adhava that was cited in the beginnfri@pation 13,
is also accurate up to 11 decimal places.



Development of Calculus in India 267
15. Transforming the Madhava series for better convergence

After the estimation of end-correction term¥uktibhasa goes on to outline a
method of transforming th&ladhava series (by making use of the above end-
correction terms) to obtain new series that have much bettevergence prop-
erties. We now reproduce the following from the English $tation of Yuk-
tibhasa: >t

Therefore, the circumference (of a circle) can be derivetdking into consider-
ation what has been stated above. A method for that is statibe verse

a7 FYTRIEST TALHG I arrﬁ?r:|
TS IEIOrATa AT TRy
TR ATTEHE: trﬁfﬁ 10

The fifth powers of the odd numbers (1, 3, 5 etc.) are increaged
4 times themselves. The diameter is multiplied by 16 and suis
cessively divided by the (series of) numbers obtained (age)b The
odd (first, third etc.) quotients obtained are added andwrracted
from the sum of the even (the second, fourth etc.) quotiefitse
result is the circumference corresponding to the given ditam

Herein above is stated a method for deriving the circumfserif the cor-
rection term is applied to an approximate circumferencetha@amount of inac-
curacy Gthaulya) is found, and if it is additive, then the result is higher. efh
it will become more accurate when the correction term okthifrom the next
higher odd number is subtracted. Since it happens that (@mo@mate circum-
ference) becomes more and more accurate by making comredticsucceeding
terms, if the corrections are applied right from the begigniself, then the cir-
cumference will come out accurate. This is the rationaletliar (above-stated
result).

When it is presumed that the correction-divisor is just detibe odd number,
the following is a method to obtain the (accurate) circumfiee by a correction
for the corresponding inaccuracythaulyamsa-parihara), which is given by
the verse:

ST ATNIfAEdTd JuETH AT (g G a: |
e Ao FHa: Fredr TR I

The diameter is multiplied by 4 and is divided, successjvialythe

cubes of the odd numbers beginning from 3, which are dimaudfy

these numbers themselves. The diameter is now multiplietthreg,

and the quotients obtained above, are added to or subtriorad

alternatively. The circumference is to be obtained thus.

If, however, it is taken that half the result (of dividing) the last even number

is taken as the correction, there is a method to derive tloeroiference by that
way also, as given by the verse

gfegsT a1 Faan: @ grig fgfaafass=)
VT RO S AT AT TR ETE I iy

The squares of even numbers commencing from 2, diminished by

glGanita-yukti-bhdgd, cited above, Section 6.9, pp. 80-82, 205-07, 402-04.
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one, are the divisors for four times the diameter. (Make thesl
divisions). The quotients got by (the division) are altéehaadded
to or subtracted from twice the diameter. In the end, divale fimes
the diameter by twice the result of squaring the odd numbieniong

the last even number to which is added 2.

The method ofsthaulya-parihara, outlined above, essentially involves incor-
porating the correction terms into the series from the b@gmitself. Let us recall
that inaccuracy osthaulya at each stage is given by

1 1 1
E =—+——(—). 143
() a2 T \p (143)
The series for the circumference (112) can be expresseahis & thesethaulyas
as follows:
o - wfo-2)e(ra )iy
a1 a az 3 a3 a 5

4d [(1— ai) +EQ@ -EG) +E®—.. } . (144)
1

Now, by choosing different correction-divisoss, in (144), we get several
transformed series which have better convergence prepeiifi we consider the
correction-divisor (136), then using the expression (¥88)he sthaulyas, we get

1 1 1 1
C = 4 (1_6) _16d[(35+4.3) "~ (55+45) + (75 +4.7) _}

1 1 1
& [(15+4.1) T @143  +4s _} (145)

The above series is given in the versenaparnicahatayoh .. .(l). Note that each
term in the above series involves the fifth power of the odd memm the denom-
inator, unlike the original series which only involved thesfipower of the odd
number. Clearly, this transformed series gives more ateuesults with fewer
terms.

If we had used only the lowest order correction (132) and $seciatedthaulya
(134), instead of the correction employed above, then tresformed series is the
one given in the verseyasad varidhinihatat. . .(11)

C =4d [2 + ! ! ! } (146)

@3 &5 @-71

Note that the denominators in the above transformed sergsraportional to the
third power of the odd number.
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Even if we take non-optimal correction-divisors, we ofterdeip obtaining
interesting series. For instance, if we take a non-optimakction-divisor, say of
the formap = 2p, then thesthaulya is given by

1 1 1
E = - 4 - _ =
® = =3 T2p b
. 1
(P2 -2p)
-t 147)
T p-12-1 (

Then, the transformed series will be the one given in theevérgsadiyujam
va krtayo. . .(IN1) %

C=4d [% + ! 1 1 i| (148)

@-1 @-1) @1

16. Derivation of theMadhava series for Rsine and Rversine
16.1. First and second order differences of Rsines

We shall now outline the derivation dfadhava series for Rsinetuja-jya) and
Rversine §ara), as given inYuktibhasa.>® Yuktibhasa begins with a discussion
of the first and second order Rsine-differences and derivesxact form of the
result of Aryabhata that the second-order Rsine-differences are proportimnal
the Rsines themselves. We had briefly indicated this proSgiction 5.3.

Here we are interested in obtaining thiedhava series for thgya andsara of
an arc of lengtts indicated byEC in Figure 9. This arc is divided intno equal
arc bits, wheren is large. If the arc lengte = R0, then thej-th pinda-jya, Bj is

given by*
(s . (jo

92rhe Xderse IIl'in fact presents the series (148) along with rah @rrection-term of the form
(-DP 2(p+1)2+2°
3Yuktibhd§d, cited earlier, Vol. | Section 16.5, pp. 94-103, 221-233-47.
94Figure 9 is essentially the same as Figure 3 considered tiosécexcept that thpindajyas Bj
are Rsines associated with multiples of the arcﬁbimto which the arEC = sis divided. In Figure 3,
the Bj's are the tabular Rsines associated with multiplies of 225
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The correspondingoti-jya K, and thesara Sj, are given by

ko,ti(j?s) = Rcos(jFH), (150)
. y
S = sara (%) - R|:1— cos(%)} . (151)

Now, C;Cj1 represents th¢j + 1)-th arc bit. Then, for the ar&C; = %
its pinda-jya is Bj = CjPj, and the correspondingti-jya andsara areK;j =
CiTj, § = EPj. Similarly we have

Kj

BJ +1 = Cj+1Pj+1, Kj+1 = Cj+1Tj+1 and SJ +1 = E Pj+]_. (152)

E
4_\ E S
M
e Qj
Cj Pj
= Qj+l
Cj+1 P
4 F !
C
N
T U Tj Y 0

FIGURE 9. Computation of/ya and Sara by Sarikalitas.

Let Mj41 be the mid-point of the arc-bit;Cj,1 and similarly M; the mid-
point of the previous j(-th) arc-bit. We shall denote thginda-jya of the arc
EMj;1 asBH% and clearly

Bj+% =M;j11Qj41 -
The correspondingoti-jya andsara are

KJ+% = M;j1Uj1 and Sj+% =EQjy1.
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Similarly,

Bj_%zMij, Kj_%zMjUj and Sj_%zEQj. (153)
Let a be the chord corresponding to the equal arc—ﬁitas indicated in Fig-
ure 9. That isCjCjy1 = MjMj11 = a. Let F be the intersection o€;T;

andCj1Pj41, andG of MjUj and Mj;1Qj;1. The trianglesCj,1FC; and
0Qj+1Mj 41 are similar, as their sides are mutually perpendicularsthe have

Ci+1Cj  CjuF FC;j

OMj41 OQji1 QjraMjir (154)
Hence we obtain
Bii—B = (&)K. (155)
Ki—Kis1 = Sn-5=(5) By (156)
Similarly, the trianglesMj 11GM; andO P;C; are similar and we get
Thus we obtain
B - By=(5)Ki (158)
Kioy = Ki1=S,1-§.3= (%) B . (159)
We define the Rsine-differencesgnda-jya) Aj by
Aj=Bj—Bj-1, (160)
with the convention thah; = B;. From (155), we have
Aj = (%) K1 (161)
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From (159) and (161), we also get the second order Rsinerdiftes (the differ-
ences of the Rsine-differences callgdinda-jyantara):

Aj—Aj1 = (Bj —Bj-1) —(Bj+1— Bj)
() (550
(%) (843 -53)

_ (ﬁR)Z B . (162)

Now, if the sum of the second-order Rsine-differences, ligraigted from the first
Rsine-difference, then we get any desired Rsine-diffexembat is

A1 — [(Al— A+ (A2 —A3)+ ...+ (Aj_1— Aj)] =Aj. (163)
From (162) and (163) we conclude that

a2
Al_(ﬁ) (Bi+Bo+---+Bj-1) = Aj. (164)

16.2. Rsines and Rversines frondya-sankalita

We can sum up the Rversine-differences (159), to obtaiddhe Rversine, at the
midpoint of the last arc-bit as follows:

S1-S = (S1-S-g)+ (s:-s1)
(%) (Bn-1+Bn2+...+ By). (165)

Using (162), the right hand side of (165) can also be expteas@ summation of
the second order differences. From (164) and (165) it fadlthvat the Rversine at
the midpoint of the last arc-bit is also given by

o
(ﬁ) (83— 81) = (A1 — ). (166)
Now, since the first Rsine-differenge; = Bs1, any desired Rsine can be obtained
by adding the Rsine-differences; these Rsine-differehe®s been obtained in
(164). Now, by making use of (164), the lagtda-jya can be expressed as fol-
lows:

Bh=An+An1+...+ A1



Development of Calculus in India 273

2
:nAl—(%) [(Bi+Bs...+By1)+ (Bi+Bz... 4+ Br2) +...+ Bi]

an?2
—nB — (ﬁ) [Bno1+2Bn_2+---+ (n—1)By]. (167)

The results (158) — (167), obtained so far, involve no apipnatons. It is now
shown how better and better approximations to the Rsine amisihe can be
obtained by takingn to be very large or, equivalently, the arc-§itto be very
small. Then, we can approximate the full-chord and the Rsiriee arc-bit by the
arc-bit2 itself. Also, as a first approximation, we can approximaeeitnda-jyas
Bj in the equations (164), (165) or (167) by the correspondiog themselves.
That is

is (168)

Bj o

%

The result for the Rsine obtained this way is again used taiolatbetter approx-
imation for thepinda-jyas Bj which is again substituted back into the equations
(165) and (167) and thus by a process of iteration succelsstier approximations
are obtained for the Rsine and Rversine. Now, once we Bjke 12, we will be

led to estimate the sums and repeated sums of natural nuifddedyekottara-
sankalita), when the number of terms is very large.

16.3. Derivation of Madhava series by iterative corrections tojya and sara

As we noted earlier, the relations given by (165) and (16&)ex@act. But now we
shall show how better and better approximations to the RamngeRversine of any
desired arc can be obtained by takmtp be very large or, equivalently, taking the
arc—bit% to be very small. Then both the full-chosd and the first Rsin®; (the
Rsine of the arc-bit), can be approximated by the ar¢fiiself, and the Rversine
31_% can be taken a$§, and the Rversinés% may be treated as negligible. Thus



274 K. Ramasubramanian and M. D. Srinivas

the above relations (165), (167) becdthe
s=s =~ (i) (Bn_t + Bn_2+ ...+ By) (169)
nR ’

B S\ 1B+ B Bn_1)
B: n ~ S_<n_R) ]_+ 2++ n—1
+(B1+B2...+Bp—2)+...+B1], (170)

whereB andS are the Rsine and Rversine of the desired arc of leagthd the
results will be more accurate, larger the valuaof

Now, as a first approximation, we take eaghda-jya Bj in (169) and (170) to
be equal to the corresponding arc itself, that is

B~ 35 (171)

Then we obtain for the Rversine

~ (%)[(n—l)(§)+(n—2)<§)+...]

1 S\ 2
- (ﬁ) (ﬁ) [(N—D+N-2)+..] (172)
For largen, we can use the estimate (89) for the sum of integers. Herk®) (1
reduces to
1\ s?
S~ (=)—. 173
(3)3 a73)

Equation (173) is the firsfara-samskara, correction to the Rversine. We now
substitute our first approximation (171) to th@da-jyas Bj in (170), which gives
the Rsine of the desired are as a second order repeated shayoiia-jyas Bj.
We then obtain

N 1\? /s\3
Bws—(ﬁ) (ﬁ) [(A+24. ..+ (N=1)+A+2+...(n=2)+...]. (174)

95As has been pointed out by one of the reviewers, in the foligwderivation instead of using
the relation (170), which involves repeated summatiop:@fdajyas, one could use the much simpler
relation

s
B=Bn“5—ﬁ($1—1+sn—2+~-~+51),

which essentially follows from (165) and (170). Then we ctamate between the above equation
and (169) which involve considering only sums of powers ¢égers. Yuktibhasa, however, em-
ployes successive iteration between (169) and (170), whiaiives consideration of repeated sums of
integers.
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The second term in (174) is @vitiya-sankalita, the second order repeated sum,
and using the estimate (108), we obtain

1\? 3
Brs—({=) —. 175
(R) 1.2.3 ( )

Thus we see that the first correction obtained in (175) to thiedRarc-difference
(jya-capantara-samskara), is equal to the earlier correction to the Rversisie-¢-
samskara) given in (173) multiplied by the arc and divided by the ragand 3.

It is noted that the results (173) and (175) are only apprai@ntrayika),
since, instead of thearkalita of the pinda-jyas in (169) and (170), we have only
carried outsarikalita of the arc-bits. Now that (175) gives a correction to the
difference between the Rsine and the gr@{capantara-samskara), we can use
that to correct the values of thenda-jyas and thus obtain the next corrections to
the Rversine and Rsine.

Following (175), thepinda-jyas may now be taken as

e\ 3
. 2 IS
Is_ (1 (n)
B~ — (=) | 222 |, 176
7 n (R) 1.2.3 (176)

If we introduce (176) in (169), we obtain

1 2
S ~ (ﬁ)(%) (M=) +Mn-2)+..]

- () (%)2 () (1—;3) (= D+ (=2°+..]. (77)

The first term in (177) was already evaluated while derivibg3). The second
termin (177) can either be estimated as a summation of cyhesd-sarkalita),

or as atrtiya-sankalita, third order (repeated) summation, because each individ-
ual term there has been obtained by doing a second-orderafies) summation.
Hence, recollecting our earlier estimate (110) for thesg:alitas, we get

1)\ §? 1\3 ¢
= (ﬁ) 12~ (ﬁ) 1234 (178)
Equation (178) gives a correctiodafa-samskara) to the earlier value (173) of
the Rversine, which is nothing but the earlier correctiothtoRsine-arc difference

(jya-capantara-samskara) given in (175) multiplied by the arc and divided by the
radius and 4.
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Again, if we use the correctednda-jyas (176) in the expression (170) for the
Rsine, we obtain

s~ s—(%f
(2) ¢
)

(123
<o (3) () s ge

The above process can be repeated to obtain successive biglee correc-
tions for the Rversine and Rsine: By first finding a correctigya-capantara-
samskara) for the difference between the Rsine and the arc, usingctiri®ction
to correct thepinda-jyas Bj, and using them in equations (169) and (170) get the
next correction {ara-samskara) for the Rversines, and the next correctignat
capantara-samskara) for the Rsine-arc-difference itself, which is then em@dy
to get further corrections iteratively. In this way we are te theMadhava series
for jya andsara given by

| 1\2 &3 1\* °
B =Rsin(s) = S—(ﬁ) (1-—2-3)+(§) (1.2.345)

1\8 s/
A=) —+ ...,
(R) (1.2.3.45.7)

[(1+2+..+(n—1))+(1+2+..+(n—2))+..]

\_/

3)
[

‘ -

B+B+. . +0n- n%+wﬁ+2ihu+m—a%+“]

Tl N

1\ s? 1\ &
S—R _ (RS _(Ly_s
verss) (R) 2 (R) (12.34)
1\°> &8
) 5 . @80
+(R) (123.46) (180)
That is,
68 6° 07
ine = 60— -
s (123 T (12345 (1234567 "
62 04 6
versg = - + - (181)

(12) (1.234) ' (12.45.6)
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17. Instantaneous velocity and derivatives

As we saw in Section 6.1, theandaphala or the equation of centre for a planet
A is given by

RSiN(A ) = (%’) Rsin(M — ), (182)

wherer is the mean epicycle radius is the mean longitude of the planet and
the longitude of the apogee. Further as we noted eaklliefijjala, Aryabhata Il
andBhaskara Il used the approximation

Rsin(Au) ~ Au, (183)

in (182) and obtained the following expression as corrediiothe instantaneous
velocity of the planet:

d ro d
(B = (ﬁ) RCosSM — o) (M — ). (184)

Actually the instantaneous velocity of the planet has tovaduated from the more
accurate relation

Au = Rsint [(rﬁo) Rsin(M — )] (185)

The correct expression for the instantaneous velocity ivimeolves the derivative
of arc-sine function has been given Nylakantha in his Tantrasarigraha.®®

T AEE e AU AT R TH e FELel|
T FICFG O HFRTEAT Feg g T G|

qrgame FEmies I faartag § Facies|
TEIEFCaU Tfafadl: I TeaHasT W@

Let the product of thé&otiphala [rg coS¥M —a)] in minutes and the daily motion
of the manda-kendra (d(ﬁ'\ft_—“)) be divided by the square root of the square of

the bahuphala subtracted from the square tfijya (,/ R2 — rg Si2(M — a)).

The result thus obtained has to be subtracted from the daitiomof the Moon
if the manda-kendra lies within six signs beginning from/rga and added if it

98 Tuntrasargraha, cited above (fn. 52), verses 2.53-54, pp.169-170. Elsewhalakantha
has ascribed these verses to his teadh@modara (Jyotirmimamsa, Ed. by K. V. Sarma, VVRI,
Hoshiarpur 1977, p. 40).
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lies within six signs beginning froniarkataka. The result gives a more accu-
rate value of the Moon’s angular velocity. In fact, the pehae for finding the
instantaneous velocity of the Sun is also the same.

If (M — «) be themanda-kendra, then the content of the above verse can be
expressed as

d(M — a)
rocogM —a) ——=
di [sin (r—o sin(M — a)) ] = dt (186)
t R JRE—rZSiP(M —a)
The instantaneous velocity of the planet is given by
d d rocogM —a) w
—u=—(M—=a)— 187
g4 =gM- (187)

JRE—rZsiP(M —a) '

Here, the first term in the RHS represents the mean velocityeoplanet and the
second term the rate of change in thendaphala given by (186).

In his Aryabhatiya-bhasya, Nilakantha explains how his result is more correct
than the traditional result dffuiijala andBhaskaracarya:®”’

I FEUE FA:? . T 41 8T a7 s ifesamo-
mﬁs&mmm‘am sg#r%wﬁrmﬁ?ﬁwm
&N FHFTCTT FOTHFH 3101 I T ATHE T HTEe-
afa: &) F9H ?

AT afgud FH FTEH| 9T qard &HO
g a1 EFAIATA: AT o7 ATHTE gedl
N FHF AT gedT TETINqe 3T | TAE AUFAFH ...

Hence, how can the results be equal? ... Again the distm&ng: there it was
prescribed that the multipliekoti-jya was to be divided byrijya, [but] here
it has been prescribed that the productkefiphala and the rate of change of
kendra be divided bykoti of the dohphala (dohphalakoﬁyd).gs

97Aryabhaﬁya of Aryabhata, Ed. with Bhasya of Nilakantha SomayajT by K. Sambasiva
Sastr1, Trivandrum Sanskrit Series 110, Trivandrum 1931, commKaiukriyapada 22-25, pp. 62—
63.

98The termsdohphala and kotiphala refer to r—'g sin(M — a) and r—'g cogM — a) respectively.

Hence, the termlohphalakotirefers to,/1 — (r—g sin(M — a))2.
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17.1. Acyuta’s expression for instantaneous velocity infeing the derivative
of ratio of two functions

In the third chapter of hisSphutanirnayatantra, Acyuta Pisarati (c. 1550—
1621), a disciple ofiyesthadeva, discusses various results for the instantaneous
velocity of a planet depending on the form of equation of ee@tanda-samskara).

He first presents the formula involving the derivative of-airte function given by
Nilakantha (in the name ofhandg- sphutagati) as follows®

Acyuta also gives the formula for the instantaneous vefoafta planet if one
were to follow a different model proposed bjunjala for the equation of centre,
according to whichmandaphala is given by

%’ sin(M — a)

(1- rﬁocos(M —a))’

Au = (188)

instead of (182), where « is small. If one were to use this formula fetan-
daphala for finding the true longitude of the planet, then it may beedahat the
instantaneous velocity will involve the derivative of ttadio of two functions both
varying with time. Taking note of this\cyuta observes?®

gfgerarfafa #a &fud: #FAIsTH)

g ferareaay yfauredrs: |

The procedure that was prescribed earlier is with referéadbe School that
conceives of the increase and decrease in the circumfedéitbe manda-vrtta

in accordance with théarna. With reference to the School that conceives of

increase and decrease only according to the half [of it], m@vprescribe the
appropriate procedure to be adopted.

Acyuta then proceeds to give the correct expression fortstantaneous velocity
of a planet inMunjala’s model2°t

ggSphutanimayatantm of Acyuta Pisarati, Ed. by K. V. Sarma, VVRI, Hoshiarpur 1974,
p. 19.

10Qpig., p. 20.
10%hig., p. 21.
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FaRIChe Hairadr fagd anFHavae ad|
4 ~ . N
AT CchIRHSHAT gl FEHABICITH |

feaFsifadagid Faecwaar AgEan
FAIAFRGHAT GG (RAHEFUT TERfaHad

Having applied theéotiphala to trijya [positively or negatively depending upon
the mandakendra), let the square of thdohphala be divided by that. This may
be added to or subtracted from thetiphala depending on whether it &/rgadi

or Karkyadi. The product of this [result thus obtained] and the daily iomobf
the manda-kendra divided by thekotiphala and applied tarijya will be the
correction to the daily motion.

Thus according to Acyuta, the correction to the mean velagiita planet in
order to obtain its instantaneous velocity is given by

(rﬁo sin(M — a))2

(1—%0 cogdM — a)) d(M — «)
(1- rﬁocos(M ) dt

(%’ cosM — ) +

(189)

which is nothing but the derivative of the expression give(ilig8).
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