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In this article we shall present an overview of the development of calculus in Indian mathematical
tradition. The article is divided naturally into two parts.In the first part we shall discuss the de-
velopments during what may be called the classical period, starting with the work of̄Aryabhat.a

(c. 499CE) and extending up to the workNārāyan. a Pan.d. ita (c. 1350). The work of the Kerala
School starting withMādhava of Saṅgamagrāma (c. 1350), which has a more direct bearing
on calculus, will be dealt with in the second part. Here we shall discuss some of the contributions
of the Kerala School during the period 1350–1500 as outlinedin the seminal Malayalam work
Yuktibhās. ā of Jyes.t.hadeva (c. 1530).

PART I : THE CLASSICAL PERIOD

Āryabhat.a to Nārāyan. a Pan.d. ita (c. 500–1350CE)

1. Introduction

In his pioneering history of calculus written sixty years ago, Carl Boyer was to-
tally dismissive of the Indian contributions to the conceptual development of the
subject.1 Boyer’s historical overview was written around the same time when (i)
Ramavarma Maru Thampuran and Akhileswarayyar brought out the first edition
of the Mathematics part of the seminal textGan. ita-yukti-bhās. ā, and (ii) C.T. Ra-
jagopal and his collaborators, in a series of pioneering studies, drew attention to
the significance of the results and techniques outlined inYuktibhās. ā (and the work
of the Kerala School of Mathematics in general), which seem to have been forgot-
ten after the initial notice by Charles Whish in early nineteenth century. These and
the subsequent studies have led to a somewhat different perception of the Indian
contribution to the development of calculus as may be gleaned from the following
quotation from a recent work on the history of mathematics:2

1C. B. Boyer,The History of the Calculus and its Conceptual Development, Dover, New York
1949, pp. 61–62.

2L. H. Hodgekin, A History of Mathematics: From Mesopotamia to Modernity, Oxford 2005,
p. 168.
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We have here a prime example of two traditions whose aims werecompletely
different. The Euclidean ideology of proof which was so influential in the Is-
lamic world had no apparent influence in India (as al-Biruni had complained long
before), even if there is a possibility that the Greek tablesof ‘trigonometric func-
tions’ had been transmitted and refined. To suppose that someversion of ‘calcu-
lus’ underlay the derivation of the series must be a matter ofconjecture.

The single exception to this generalization is a long work, much admired in
Kerala, which was known asYuktibhās. ā, by Jyes.t.hadeva; this contains some-
thing more like proofs—but again, given the different paradigm, we should be
cautious about assuming that they are meant to serve the samefunctions. Both
the authorship and date of this work are hard to establish exactly (the date usu-
ally claimed is the sixteenth century), but it does give explanations of how the
formulae are arrived at which could be taken as a version of the calculus.

The Malayalam workGan. ita-yukti-bhās. ā (c. 1530) ofJyes.t.hadeva indeed
presents an overview of the work of Kerala School of mathematicians dur-
ing the period 1350–1500CE. The Kerala School was founded byMādhava

(c. 1340–1420), who was followed by the illustrious mathematician-astronomers
Parameśvara (c. 1380–1460), his sonDāmodara and the latter’s student
Nı̄lakan.t.ha Somayāj̄ı (c. 1444–1550). While the achievements of the Kerala
School are indeed spectacular, it has now been generally recognised that these are
in fact very much in continuation with the earlier work of Indian mathematicians,
especially of thēAryabhat.an school, during the period 500–1350CE.

In the first part of this article, we shall consider some of theideas and meth-
ods developed in Indian mathematics, during the period 500–1350, which have a
bearing on the later work of the Kerala School. In particular, we shall focus on the
following topics: Mathematics of zero and infinity; iterative approximations for
irrational numbers; summation (and repeated summations) of powers of natural
numbers; use of second-order differences and interpolation in the calculation of
jyā or Rsines; the emergence of the notion of instantaneous velocity of a planet in
astronomy; and the calculation of the surface area and volume of a sphere.

2. Zero and Infinity

2.1. Background

The śānti-mantra of Īśāvāsyopanis.ad (of Śukla-yajurveda), a text of Brah-
mavidyā, refers to the ultimate absolute reality, theBrahman, aspūrn. a, the per-
fect, complete or full. Talking of how the universe emanatesfrom theBrahman,
it states::pUa;NRa;ma;dH :pUa;NRa;Æa;ma;dM :pUa;Na;Ra;tpUa;NRa;mua;d;.
ya;tea Á:pUa;NRa;~ya :pUa;NRa;ma;a;d;a;ya :pUa;NRa;mea;va;a;va;
a;Za;Sya;tea Á Á

That (Brahman) is pūrn. a; this (the universe) ispūrn. a; [this] pūrn. a emanates
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from [that] pūrn. a; even whenpūrn. a is drawn out ofpūrn. a, what remains is
alsopūrn. a.

Pān. ini’s As.t.ādhyāȳı (c. 500BCE) has the notion oflopa which functions as a
null-morpheme.Lopa appears in sevensūtras of Chapters 1, 3, 7, starting withA;d;ZRa;nMa l+.ea;paH Á (1.1.60).

Śūnya appears as a symbol inPiṅgala’s Chandah. -sūtra (c. 300BCE). In Chapter
VIII, while enunciating an algorithm for evaluating any positive integral power
of 2 in terms of an optional number of squaring and multiplication (duplication)
operations,́sūnya is used as a marker:.�+.pea ZUa;nya;m,a Á ;
a;dõ H ZUa;nyea Á (8.29-30).

Different schools of Indian philosophy have related notions such as the notion of
abhāva in Ny āya School, and thésūnyavāda of the Bauddhas.

2.2. Mathematics of zero inBrāhmasphut.a-siddhānta (c. 628CE) of
Brahmagupta

TheBrāhmasphut.a-siddhānta (c. 628CE) of Brahmagupta seems to be the first
available text that discusses the mathematics of zero.Śūnya-parikarma or the
six operations with zero are discussed in the chapter XVIII on algebra (kut.t.akā-
dhyāya), in the same six verses in which the six operations with positives and
negatives (dhanarn. a-s.ad. vidha) are also discussed. Zero divided by zero is stated
to be zero. Any other quantity divided by zero is said to betaccheda (that with
zero-denominator):3;Da;na;ya;ea;DRa;na;mxa;Na;mxa;Na;ya;ea;DRa;na;NRa;ya;ea:=+nta:=M .sa;mEa;k�+.aM Ka;m,a Á�+.Na;mEa;k�+.aM ..
a ;Da;na;mxa;Na;Da;na;ZUa;nya;ya;eaH ZUa;nya;m,a Á Á�+:na;ma;�a;Da;k+:a;
a;dõ ;Za;ea;DyMa ;Da;nMa ;Da;na;a;dx ;Na;mxa;Na;a;d;�a;Da;k+:mUa;na;a;t,a Áv.ya;~tMa ta;d;nta:=M .~ya;a;dx ;NMa ;Da;nMa ;Da;na;mxa;NMa Ba;va;�a;ta Á ÁZUa;nya;
a;va;h� ;a;na;mxa;Na;mxa;NMa ;Da;nMa ;Da;nMa Ba;va;�a;ta ZUa;nya;ma;a;k+:a;Za;m,a ÁZa;ea;DyMa ya;d;a ;Da;na;mxa;Na;a;dx ;NMa ;Da;na;a;dõ ;a ta;d;a [ea;pya;m,a Á Á�+.Na;mxa;Na;Da;na;ya;ea;Ga;Ra;ta;ea ;Da;na;mxa;Na;ya;ea;DRa;na;va;Da;ea ;Da;nMa Ba;va;�a;ta ÁZUa;nya;NRa;ya;eaH Ka;Da;na;ya;eaH Ka;ZUa;nya;ya;ea;va;Ra va;DaH ZUa;nya;m,a Á Á;Da;na;Ba;�M ;Da;na;mxa;Na;&+.ta;mxa;NMa ;Da;nMa Ba;va;�a;ta KMa Ka;Ba;�M Ka;m,a ÁBa;�+:mxa;Nea;na ;Da;na;mxa;NMa ;Da;nea;na &+.ta;mxa;Na;mxa;NMa Ba;va;�a;ta Á Á

3Brāhmasphut.asiddhānta of Brahmagupta, Ed. with his own commentary by Sudhakara
Dvivedi, Benaras 1902, verses 18.30–35, pp. 309–310.
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Ce +.dM Ka;mxa;Na;Da;na;
a;va;Ba;�M va;a Á�+.Na;Da;na;ya;ea;vRa;gRaH .~vMa KMa Ka;~ya :pa;dM kx +:�a;ta;yRa;t,a ta;t,a Á Á
. . . [The sum of] positive (dhana) and negative (r. n. a), if they are equal, is zero
(kham). The sum of a negative and zero is negative, of a positive andzero is
positive and of two zeros, zero (śūnya).
. . . Negative subtracted from zero is positive, and positivefrom zero is negative.
Zero subtracted from negative is negative, from positive ispositive, and from zero
is zero (̄akāśa). . . . The product of zero and a negative, of zero and a positive, or
of two zeroes is zero.
. . . A zero divided by zero is zero. . . . A positive or a negativedivided by zero is
that with zero-denominator.

2.3. Bhāskarācārya on Khahara

Bhāskarācārya II (c. 1150), while discussing the mathematics of zero inBı̄ja-
gan. ita, explains that infinity (ananta-rāśi) which results when some number is
divided by zero is calledkhahara. He also mentions the characteristic property of
infinity that it is unaltered even if ‘many’ are added to or taken away from it, in
terms similar to the invocatory verse ofĪśāvāsyopanis. ad mentioned above:4Ka;h:=+ea Ba;vea;t,a Kea;na Ba;�+:(ãÉa .=+a;
a;ZaH Á Á;
a;dõ .Èåî ÁÁ*+M ;
a:�a;&+.t,a KMa Ka;&+.tMa �a;yMa ..
a ZUa;nya;~ya va;g a va;d mea :pa;dM ..
a Á Á

. . .A;ya;ma;na;nta;ea 3/0 .=+a;
a;ZaH Ka;h:=H I+.tyua;.
ya;tea ÁA;�/////////�a;sma;�///�a;nva;k+:a:=H Ka;h:=e na .=+a;Za;a;va;
a;pa :pra;
a;va;�e ;Sva;
a;pa ;�a;naHsxa;tea;Sua Ába;hu ;Sva;
a;pa .~ya;a;�+:ya;sxa;
a;�;k+:a;le Y;na;nteaY;.
yua;tea BUa;ta;ga;Nea;Sua ya;dõ ;t,a Á Á
A quantity divided by zero will be (called)khahara (an entity with zero as di-
visor). Tell me . . . three divided by zero . . . This infinite (ananta or that without
end) quantity3

0 is calledkhahara.
In this quantity,khahara, there is no alteration even if many are added or taken
out, just as there is no alteration in the Infinite (ananta), Infallible (acyuta)
[Brahman] even though many groups of beings enter in or emanate from [It] at
times of dissolution and creation.

2.4. Bhāskarācārya on multiplication and division by zero

Bh āskar āc ārya while discussing the mathematics of zeroin L̄ılāvat̄ı, notes that
when further operations are contemplated, the quantity being multiplied by zero
should not be changed to zero, but kept as is. Further he states that when the quan-
tity which is multiplied by zero is also divided by zero, thenit remains unchanged.

4Bı̄jagan. ita of Bhāskarācārya, Ed. by Muralidhara Jha, Benaras 1927,Vāsanā on
Khas.ad. vidham 3, p. 6.
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He follows this up with an example and declares that this kindof calculation has
great relevance in astronomy:5ya;ea;gea KMa [ea;pa;sa;mMa va;ga;Ra;d;Ea KMa Ka;Ba;a;Æa:ja;ta;ea .=+a;
a;ZaH ÁKa;h:=H .~ya;a;t,a Ka;gua;NaH KMa Ka;gua;Na;
a;(ãÉa;ntya;(ãÉa Zea;Sa;
a;va;Da;Ea Á ÁZUa;nyea gua;Na;ke .ja;a;tea KMa h;a:=+(ãÉea;tpua;na;~ta;d;a .=+a;
a;ZaH ÁA;
a;va;kx +:ta O;;va :℄ea;ya;~ta;TEa;va Kea;na;ea;�a;na;ta:úãÁ*.a yua;taH Á ÁKMa :pa:úãÁ*.a;yua;gBa;va;�a;ta ;
a;kM va;d Ka;~ya va;g amUa;lM ;Ga;nMa ;Ga;na;pa;dM Ka;gua;Na;a;(ãÉa :pa:úãÁ*.a ÁKea;na;ea:;dÄâx ;ta;a d;Za ..
a kH Ka;gua;Na;ea ;�a;na:ja;a;DRa-yua;�+:�///�a;~:�a;Æa;Ba;(ãÉa;gua;
a;Na;taH Ka;&+.ta;�///�a;~:�a;Sa;
a;�H Á Á

. . .A::℄a;a;ta;ea .=+a;
a;ZaH ta;~ya gua;NaH 0 Á .sa;a;D a [ea;paH 1/2 Á gua;NaH 3 Á h:=H0 Á dx ;ZyMa 63 Áta;ta;ea va;[ya;ma;a;Nea;na ;
a;va;l+.ea;ma;
a;va;�a;Da;na;a I+.�;k+:mRa;Na;a va;a l+.b.Da;ea .=+a;
a;ZaH 14 ÁA;~ya ga;
a;Na;ta;~ya g{a;h;ga;
a;Na;tea ma;h;a;nua;pa;ya;ea;gaH Á
. . . A quantity multiplied by zero is zero. But it must be retained as such when
further operations [involving zero] are contemplated. When zero is the multiplier
of a quantity, if zero also happens to be a divisor, then that quantity remains
unaltered . . .
. . . What is the number which when multiplied by zero, being added to half of
itself multiplied by 3 and divided by zero, amounts to sixty-three?
. . . Either following the inverse process or by choosing a desired number for the
unknown (‘rule of false position’), the quantity is obtained to be 14. This kind of
calculation is of great use in mathematical astronomy.

Bh āskara works out his example as follows:

0

[

(

x + x

2

)

× 3

0

]

= 63

3x

2
× 3 = 63.

Therefore, x = 14. (1)

Bh āskara, it seems, had not fully mastered this kind of “calculation with infinites-
imals” as is clear from the following example that he presents inBı̄jagan. ita while
solving quadratic equations by eliminating the middle term:6

5Lı̄lāvat̄ı of Bhāskarācārya, Ed. by H. C. Bannerjee, Calcutta 1927,Vāsanā on verses 45–46,
pp. 14–15.

6Bı̄jagan. ita, cited above,Vāsanā onavyaktavargādi-samı̄karan. am 5, pp. 63–64.
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a;h;ta;ea .=+a;
a;ZaH Ka;gua;Na;ea va;�a;gRa;ta;ea yua;taH Á.~va;pa;d;a;Bya;Ma Ka;Ba;�+:(ãÉa .ja;a;ta;aH :pa:úãÁ*.a;d;Za;ea;.
ya;ta;a;m,a Á Á
Say what is the number which when added to half of itself, multiplied by zero,
squared and the square being augmented by twice its root and divided by zero,
becomes fifteen?

Clearly the problem as stated is

[

0(x + x
2)
]2 + 2 ×

[

0(x + x
2)
]

0
= 15. (2)

Bh āskara in hisVāsanā seems to just cancel out the zeros without paying any
heed to the different powers of zero involved. He converts the problem into the
equation

[

x + x

2

]2
+ 2 ×

[

x + x

2

]

= 15. (3)

Solving this, by the method of elimination of the middle term, Bh āskara obtains
the solutionx = 2. The other solution(−10

3 ) is not noted.

3. Irrationals and iterative approximations

3.1. Background

Baudhāyana-śulva-sūtra gives the following approximation for
√

2:7:pra;ma;a;NMa txa;t�a;a;yea;na va;DRa;yea:�a;�a ..
a;tua;TeRa;na;a;tma;.
a;tua;�///�a;~:�Ma;Za;ea;nea;na Á .sa;
a;va;Zea;SaH Á
The measure [of the side] is to be increased by its third and this [third] again by
its own fourth less the thirty-fourth part [of the fourth]. That is the approximate
diagonal (savíses.a).

√
2 ≈ 1 + 1

3
+ 1

3.4
− 1

3.4.34

= 577

408
= 1.4142156. (4)

7Baudhāyanaśulvasūtram (1.61-2), inTheŚulvasūtras, Ed. by S. N. Sen and A. K. Bag, New
Delhi 1983, p. 19.



Development of Calculus in India 207

The above approximation is accurate to 5 decimal places.Baudhāyana-śulva-
sūtra—in the context of discussing the problem of circling a square—also gives
an approximation forπ : 8..
a;tua:=+(rMa ma;Nq+.lM ;�a;.
a;k
 +:a;SRa;�a;[Na;ya;a;D a ma;Dya;a;tpra;a;.
�a;a;ma;Bya;a;pa;a;ta;yea;t,a Áya;d;�a;ta;
a;Za;Sya;tea ta;~ya .sa;h;txa;t�a;a;yea;na ma;Nq+.lM :pa;�a:=+�a;l+.Kea;t,a Á

If it is desired to transform a square into a circle, [a cord oflength] half the
diagonal of the square is stretched from the centre to the east; with one-third [of
the part lying outside] added to the remainder [of the half-diagonal] the [required]
circle is drawn.

If a is half-the side of the square, then the radiusr of the circle is given by

r ≈
(a

3

)

(2 +
√

2). (5)

This corresponds toπ ≈ 3.0883.

3.2. Algorithm for square-roots in Āryabhat.̄ıya

The Āryabhat. ı̄ya of Āryabhat.a (c. 499CE) gives a general algorithm for com-
puting the successive digits of the square root of a number. The procedure, given
in the following verse, is elucidated by us via an example:9Ba;a;gMa h:=e +d;va;ga;Ra;
a;�a;tyMa ;
a;dõ ;gua;Nea;na va;gRa;mUa;le +.na Áva;ga;Ra;dõ ;geRa Zua:;dÄâ e l+.b.DMa .~Ta;a;na;a;nta:=e mUa;l+.m,a Á Á

Always divide the non-square (even) place by
twice the square-root [already found]. Having sub-
tracted the square [of the quotient] from the square
(odd) place, the quotient gives the [digit in the]
next place in the square-root.

7 5

5 6 2 5
4 9

14) 7 2 (5
7 0

2 5
2 5
0 0

3.3. Approximating the square-root of a non-square number

The method for obtaining approximate square-root (āsanna-mūla) of a non-square
number (amūlada-rāśi) is stated explicitly inTrísatikā of Śr̄ıdhara (c. 750):10

8Baudhāyanaśulvasūtram (1.58), ibid., p. 19.
9Āryabhat.ı̄ya of Āryabhat.a, Ed. by K. S. Shukla and K. V. Sarma, New Delhi 1976,

Gan. itapāda 4, p. 36.
10Trísatikā of Śr̄ıdhara, Ed. by Sudhakara Dvivedi, Varanasi 1899, verse 46, p. 34.
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a;n}å.a;h;ta;a ÁmUa;lM Zea;Sea;Na ;
a;va;na;a ;
a;va;Ba:jea;�ç Åu +Na;va;gRa;mUa;le +.na Á Á
Multiply the non-square number by some large square number,take the square-
root [of the product] neglecting the remainder, and divide by the square-root of
the multiplier.

Nārāyan.a Pan.d. ita (c. 1356) has noted that the solutions ofvarga-prakr. ti (the
so called Pell’s equation) can be used to compute successiveapproximations to the
square-root of a non-square number:11mUa;lM g{a;a;hùÅ:aM ya;~ya ..
a ta;dÒU +pa;[ea;pa:jea :pa;de ta:�a Á.$yea;�M &+.~va;pa;de ;na ..
a .sa;mua:;dÄâ :=e +t,a mUa;l+.ma;a;sa;�a;m,a Á Á

[With the number] whose square-root is to be found as theprakr. ti and unity as
theks.epa, [obtain the greater and smaller] roots. The greater root divided by the
lesser root is an approximate value of the square-root.

Nārāyan.a considers the example

10x2 + 1 = y2, (6)

and gives the approximate values:

√
10 ≈ 19

6
,

721

228
,

27379

8658
, (7)

which are obtained by successive compositions (bhāvanā) of the solutionx =
6, y = 9:12

228= (2)(6)(19), 721= (10)(6)2 + (19)2, and so on.

3.4. Approximate value ofπ in Āryabhat.ı̄ya

Āryabhat.a (c. 499) gives the following approximate value forπ :13..
a;tua:=+�a;Da;kM Za;ta;ma;�;gua;NMa dõ ;a;Sa;
a;�;~ta;Ta;a .sa;h;~åò:a;a;Na;a;m,a ÁA;yua;ta;dõ ;ya;
a;va;Sk+:}Ba;~ya;a;sa;�a;ea vxa:�a;pa;�a:=+Na;a;hH Á Á
11Gan. itakaumud̄ı of Nārāyan.a Pan. d. ita, Ed. by Padmakara Dvivedi, Part II, Benaras 1942,

verse 10.17, p. 244.
12Bhāvanā or the rule of composition enunciated by Brahmagupta is the transformation (X, Y)→

(X2 + DY2, 2XY) which transforms a solutionx = X, y = Y of the equationx2 − Dy2 = 1, into
another solution with larger values forx, y, which correspond to higher convergents in the continued
fraction expansion of

√
D and thus give better approximations to it.

13Āryabhat. ı̄ya, cited above,Gan. itapāda 10, p. 45.



Development of Calculus in India 209

One hundred plus four multiplied by eight and added to sixty-two thousand: This
is the approximate measure of the circumference of a circle whose diameter is
twenty-thousand.

Thus as per the above verseπ ≈ 62832
20000 = 3.1416.

3.5. Successive doubling of the sides of the circumscribingpolygon

It appears that Indian mathematicians (at least in theĀryabhat.an tradition)
employed the method of successive doubling of the sides of a circumscribing
polygon—starting from the circumscribing square leading to an octagon, etc.—
to find successive approximations to the circumference of a circle. This method
has been described in the later Kerala textsYuktibhās. ā (c. 1530) ofJyes.t.hadeva
andKriyākramakar̄ı commentary (c. 1535) of́Saṅkara Vāriyar on L̄ılāvat̄ı, of
Bhāskara II. The latter cites the verses ofMādhava (c. 1340–1420) in this con-
nection and notes at the end that:14O;;vMa ya;a;va;d;B�a;a;�M .sUa;[ma;ta;a;ma;a;pa;a;d;�a;ya;tMua Za;k�+.a;m,a Á

Thus, one can obtain [an approximation to the circumferenceof the circle] to any
desired level of accuracy.

O

C1

E AA

S

D

D

C

B

1A 3  2

2

2

B3

1

2

FIGURE 1. Finding the circumference of a square from circum-
scribing polygons.

14Lı̄lāvat̄ı of Bhāskara II, Ed. with commentaryKriyākramakar̄ı of Śaṅkara Vāriyar by
K. V. Sarma, Hoshiarpur 1975, comm. on verse 199, p. 379.
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We now outline this method as described inYuktibhās. ā.15 In Figure 1,E OSA1
is the first quadrant of the square circumscribing the given circle. E A1 is half the
side of the circumscribing square. LetO A1 meet the circle atC1. Draw A2C1B2
parallel toES. E A2 is half the side of the circumscribing octagon.

Similarly, let O A2 meet the circle atC2. Draw A3C2B3 parallel toEC1. E A3
is now half the side of a circumscribing regular polygon of 16sides. And so on.
Let half the sides of the circumscribing square, octagon etc., be denoted

l1 = E A1, l2 = E A2, l3 = E A3, . . . (8)

The correspondingkarn. as (diagonals) are

k1 = O A1, k2 = O A2, k3 = O A3, . . . (9)

And theābhādhas (intercepts) are

a1 = D1A1, a2 = D2A2, a3 = D3A3, . . . (10)

Now

l1 = r, k1 =
√

2r and a1 = r√
2
. (11)

Using thebhujā-kot.i-karn. a-nyāya (Pythagoras theorem) andtrairāśika-nyāya
(rule of three for similar triangles), it can be shown that

l2 = l1 − (k1 − r )
l1
a1

(12)

k2
2 = r 2 + l 2

2 (13)

and a2 =
[k2

2 − (r 2 − l 2
2)]

2k2
. (14)

In the same wayln+1, kn+1 andan+1 are to be obtained in terms ofln, kn and
an. These can be shown to be equivalent to the recursion relation:16

ln+1 = r

ln
[
√

(r 2 + l 2
n) − r ]. (15)

15Gan. ita-yukti-bhās.ā of Jyes.t.hadeva, Ed. and Tr. by K. V. Sarma, with Exp. Notes by K. Ra-
masubramanian, M. D. Srinivas and M. S. Sriram, 2 Vols, Hindustan Book Agency, New Delhi 2008.
Reprint Springer 2009, Vol. I Section 6.2, pp. 46–49, 180–83, 366–69.

16If we setr = 1 andln = tanθn, then equation (15) givesln+1 = tan
(

θn
2

)

. Actually, θn = π
2n+1

and the above method is based on the fact that for largen, 2n tan π
2n+2 ≈ 2n π

2n+2 = π
4 .
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4. Summation (and repeated summations) of powers of naturalnumbers
(saṅkalita)

4.1. Sum of squares and cubes of natural numbers in̄Aryabhat.ı̄ya

The ancient textBr. haddevatā (c. 5th centuryBCE) has the result

2 + 3 + . . . + 1000= 500, 499. (16)

Āryabhat.a (c. 499CE), in theGan. itapāda of Āryabhat. ı̄ya, deals with a general
arithmetic progression in verses 19–20. He gives the sum of the squares and cubes
of natural numbers in verse 22:17.sEa;k+:sa;ga;.
C+.pa;d;a;na;Ma kÒ +:ma;a;t,a ;
a:�a;sMa;va;�a;gRa;ta;~ya :Sa;�+eMaY;ZaH Áva;gRa;�a;.
a;�a;ta;Ga;naH .sa Ba;vea;t,a ;�a;.
a;�a;ta;va;ga;eRa ;Ga;na;�a;.
a;�a;ta;Ga;na;(ãÉa Á Á

The product of the three quantities, the number of terms plusone, the same in-
creased by the number of terms, and the number of terms, when divided by six,
gives the sum of squares of natural numbers (varga-citi-ghana). The square
of the sum of natural numbers gives the sum of the cubes of natural numbers
(ghana-citi-ghana).

In other words,

12 + 22 + 32 + . . . + n2 = n(n + 1)(2n + 1)

6
(17)

13 + 23 + 33 + . . . + n3 = [1 + 2 + 3 + . . . + n]2

=
[

n(n + 1)

2

]2

. (18)

4.2. Repeated sum of natural numbers in̄Aryabhat.ı̄ya

Āryabhat.a also gives the repeated sum of the sum of the natural numbers (saṅka-
lita-saṅkalita or vāra-saṅkalita):18O;;k+:ea:�a:=+a;dùÅ;au ;pa;�a;.
a;tea;gRa;.
C+.a;dùÅ;ae ;k+:ea:�a:=+
a:�a;sMa;va;gRaH Á:Sa:ñÂÅÅå*.+:�H .sa ;�a;.
a;�a;ta;Ga;naH .sEa;k+:pa;d;Ga;na;ea ;
a;va;mUa;l+.ea va;a Á Á

Of the series (upaciti) 1, 2, . . . ,n, take three terms in continuation of which the
first is the given number of terms (gaccha), and find their product; that [product],
or the number of terms plus one subtracted from its own cube divided by six, gives
the repeated sum (citi-ghana).

17Āryabhat.ı̄ya, cited above,Gan. itapāda 22, p. 65.
18Āryabhat.ı̄ya, cited above,Gan. itapāda 21, p. 64.
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We have

1 + 2 + 3 + . . . + n = n(n + 1)

2
. (19)

Āryabhat.a’s result expresses the sum of these triangular numbers in two forms:

1
(1 + 1)

2
+ 2

(2 + 1)

2
+ . . . + n

(n + 1)

2
= [n(n + 1)(n + 2)]

6

= [(n + 1)3 − (n + 1)]

6
. (20)

4.3. Nārāyan. a Pan. d. ita’s general formula for Vārasaṅkalita

In his Gan. ita-kaumud̄ı, N ār āyan.a Pan.d. ita (c. 1356) gives the formula for the
r th-order repeated sum of the sequence of numbers 1, 2, 3, . . . ,n:19O;;k+:a;�a;Da;k+:va;a:=+Æa;ma;ta;aH :pa;d;a;
a;d:�+.pa;ea:�a:=+a :pxa;Ta;k, .teMaY;Za;aH ÁO;;k+:a;dùÅ;ae ;k+:.
a;ya;h:=+a;~ta:.�ÈÅ +a;ta;ea va;a:=+sa;ñÍö�ÅÅ*:+.�a;l+.ta;m,a Á Á

The pada (number of terms in the sequence) is the first term [of an arithmetic
progression] and 1 is the common difference. Take as numerators [the terms
in the AP] numbering one more thanvāra (the number of times the repeated
summation is to be made). The denominators are [terms of an APof the same
length] starting with one and with common difference one. The resultant product
is vāra-saṅkalita.

Let

1 + 2 + 3 + . . . + n = n(n + 1)

2
= V (1)

n . (21)

Then, N ār āyan.a’s result is

V (r )
n = V (r−1)

1 + V (r−1)
2 + . . . + V (r−1)

n (22)

= [n(n + 1) . . . (n + r )]

[1.2 . . . (r + 1)]
. (23)

N ār āyan.a’s result can also be expressed in the form of a sum of polygonal num-
bers:

n
∑

m=1

[m(m + 1) . . . (m + r − 1)]

[1.2 . . . r ]
= [n(n + 1) . . . (n + r )]

[1.2 . . . (r + 1)]
. (24)

19Gan. itakaumud̄ı of N ār āyan.a Pan.d. ita, Ed. by Padmakara Dvivedi, Part I, Benaras 1936, verse
3.19–20, p. 123.
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This result can be used to evaluate the sums
∑n

k=1 k2,
∑n

k=1 k3, . . . by induction.
It can also be used to estimate the behaviour of these sums forlargen.

4.4. Summation of geometric series

The geometric series 1+ 2 + 22 + . . . 2n is summed in Chapter VIII of Piṅgala’s
Chandah. -sūtra (c. 300 BCE). As we mentioned earlier, Piṅgala also gives an
algorithm for evaluating any positive integral power of a number (2 in this context)
in terms of an optimal number of squaring and multiplicationoperations.

Mahāv̄ırācārya (c. 850), in hisGan. ita-sāra-saṅgraha gives the sum of a geo-
metric series and also explains the Piṅgala algorithm for finding the required power
of the common ratio between the terms of the series:20:pa;d;Æa;ma;ta;gua;Na;h;�a;ta;gua;
a;Na;ta;pra;Ba;vaH .~ya;a;�ç Åu +Na;Da;nMa ta;d;a;dùÅ;aU ;na;m,a ÁO;;k+:ea;na;gua;Na;
a;va;Ba;�M gua;Na;sa;ñÍö�ÅÅ*:+.�a;l+.tMa ;
a;va:ja;a;n�a;a;ya;a;t,a Á Á.sa;ma;d;l+.
a;va;Sa;ma;~va:�+.pa;ea gua;Na;gua;
a;Na;ta;ea va;gRa;ta;a;
a;q+.ta;ea ga;.
CH Á.�+.pa;ea;naH :pra;Ba;va.Èåî ÁÁ*+;ea v.yea;k+:ea:�a:=+Ba;a;Æa:ja;taH .sa;a:=+m,a Á Á

The first term when multiplied by the product of the common ratio (gun. a) taken
as many times as the number of terms (pada), gives rise to thegun. adhana.
Thisgun. adhana, when diminished by the first term and divided by the common
ratio less one, is to be understood as the sum of the geometrical series (gun. a-
saṅkalita).

That is

a + ar + ar2 + . . . + arn−1 = a(r n − 1)

(r − 1)
. (25)

Vı̄rasena (c. 816), in his commentaryDhavalā on theS. at.khan. d. āgama, has made
use of the sum of the following infinite geometric series in his evaluation of the
volume of the frustum of a right circular cone:21

1 + 1

4
+
(

1

4

)2

+ . . . +
(

1

4

)n

+ . . . = 4

3
. (26)

The proof of the above result is discussed in theĀryabhat. ı̄ya-bhās. ya (c. 1502)
of Nı̄lakan. t.ha Somayāj̄ı. As we shall see later (section 10.1),Nı̄lakan. t.ha makes
use of this series for deriving an approximate expression for a small arc in terms
of the corresponding chord in a circle.

20Gan. itasārasaṅgraha of Mahāv̄ırācārya, Ed. by Lakshmi Chanda Jain, Sholapur 1963,
verses 2.93–94, pp. 28–29.

21See, for instance, T. A. Sarasvati Amma,Geometry in Ancient and Medieval India, Motilal
Banarsidass, Delhi 1979, Rep. 2007, pp. 203–05.
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5. Use of Second-order differences and interpolation in computation of
Rsines (Jyānayana)

Jyā, Kot.i and Śara

Thejyā or bhujā-jyā of an arc of a circle is actually the half-chord (ardha-jyā
or jyārdha) of double the arc. In the Figure 2, ifR is the radius of the circle,jyā
(Rsine),kot.i or kot.i-jyā (Rcosine) and́sara (Rversine) of thecāpa (arc) EC are
given by:

jyā (arc EC) = C D = Rsin( 6 C O E) (27)

kot.i (arc EC) = O D = Rcos( 6 C O E) (28)

śara (arc EC) = E D = Rvers( 6 C O E)

= R − Rcos( 6 C O E). (29)

For computing standard Rsine-tables (pat.hita-jyā), the circumference of a circle

O

E

S

D

E

C

FIGURE 2. Jyā, Kot.i andŚara.

is divided into 21600′ and usually the Rsines are tabulated for every multiple of
225′, thus giving 24 tabulated Rsines in a quadrant. Using the value of π ≈
62832
20000 = 3.1416, given bȳAryabhat.a, the value of the radius then turns out to be
3437′ 44′′ 19′′′. This is accurate up to the seconds, but is usually approximated
to 3438′. Using a more accurate value ofπ , Mādhava (c. 1340–1420) gave the
value of the radius correct to the thirds as 3437′ 44′′ 48′′′ which is also known by
theKat.apayādi formuladevo-vísvasthal̄ı-bhr. guh. .
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5.1. Computation of Rsines

Once the value of the radiusR is fixed (in units of minutes, seconds etc.) the 24
Rsines can be computed (in the same units) using standard relations ofjyotpatti
(trigonometry). For instance,Varāhamihira has given the following Rsine values
and relations in hisPañcasiddhāntikā (c. 505):22

Rsin(30◦) = R

2
(30a)

Rsin(45◦) = R√
2

(30b)

Rsin(60◦) =
√

3

2
R (30c)

Rsin(90◦) = R (30d)

Rsin(A) = Rcos(90− A) (31)

Rsin2(A) + Rcos2(A) = R2 (32)

Rsin

(

A

2

)

=
(

1

2

)

[ Rsin2(A) + R vers2(A)]
1
2

=
(

R

2

) 1
2

[ R − RcosA]
1
2 . (33)

The above Rsine values (30) and relations (31)–(33) can be derived using the
bhujā-kot.i-karn. a-nyāya (Pythagoras theorem) andtrairāśika (rule of three for
similar triangles), as is done for instance in theVāsanā-bhās.ya of Pr. thūdaka-

svāmin (c. 860) onBrāhmasphut.asiddhānta (c. 628) ofBrahmagupta. Equa-
tions (30)–(33) can be used to compute all 24 tabular Rsine values.

5.2. Āryabhat.a’s computation of Rsine-differences

The computation of tabular Rsine values was made much simpler by Āryabhat.a

who gave an ingenious method of computing the Rsine-differences, making use of
the important property that the second-order differences of Rsines are proportional
to the Rsines themselves:23

22Pañcasiddhāntikā of Varāhamihira, Ed. by T. S. Kuppanna Sastry and K. V. Sarma, Madras
1993, verses 4.1–5, pp. 76–80.

23Āryabhat.ı̄ya, cited above,Gan. itapāda 12, p. 51.
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a;dõ ;t�a;a;ya;a;DRa;m,a Áta;tpra;Ta;ma:$ya;a;Da; a;ZEa;~tEa;~tEa:�+.na;a;�a;na Zea;Sa;a;
a;Na Á Á
The first Rsine divided by itself and then diminished by the quotient will give
the second Rsine-difference. The same first Rsine, diminished by the quotients
obtained by dividing each of the preceding Rsines by the firstRsine, gives the
remaining Rsine-differences.

Let B1 = Rsin (225′), B2 = Rsin (450′), ..., B24 = Rsin (90◦), be the
twenty-four Rsines, and let11 = B1, 12 = B2 − B1, ..., 1k = Bk − Bk−1, ...

be the Rsine-differences. Then, the above rule may be expressed as24

12 = B1 − B1

B1
(34)

1k+1 = B1 − (B1 + B2 + . . . + Bk)

B1
(k = 1, 2, . . . , 23). (35)

This second relation is also sometimes expressed in the equivalent form

1k+1 = 1k − (11 + 12 + . . . + 1k)

B1
(k = 1, 2, . . . , 23). (36)

From the above it follows that

1k+1 − 1k = −Bk

B1
(k = 1, 2, . . . , 23). (37)

SinceĀryabhat.a also takes11 = B1 = Rsin(225′) ≈ 225′, the above relations
reduce to

11 = 225′ (38)

1k+1 − 1k = −Bk

225′ (k = 1, 2, . . . , 23). (39)

5.3. Derivation of theĀryabhat.a-relation for the second-order
Rsine-differences

Āryabhat.a’s relation for the second-order Rsine-differences is derived and made
more exact in thēAryabhat. ı̄ya-bhās. ya (c. 1502) ofNı̄lakan.t.ha Somayāj̄ı and
Yuktibhās. ā (c. 1530) ofJyes.t.hadeva. We shall present a detailed account of

24Āryabhat.a is using the approximation12 − 11 ≈ 1′ and the second terms in the RHS of
(34)–(36) and the RHS of (37) and (39) have an implicit factorof (12 − 11). See (45) below which is
exact.
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the first and second-order Rsine-differences as given inYuktibhās. ā
25 later in

Section 16. Here we shall only summarize the argument.
In Figure 3, the arcsECj and ECj +1 are successive multiples of 225′. The

Rsine and Rcosine of the arcsECj andECj +1 are given by

B j = C j Pj , B j +1 = C j +1Pj +1 (40)

and K j = C j Tj , K j +1 = C j +1Tj +1, (41)

respectively. LetM j +1 and M j be the mid-points of the arcsC j C j +1, C j −1C j

and the Rsine and Rcosine of the arcsE M j andE M j +1 be denoted respectively
by B j − 1

2
, B j + 1

2
, K j − 1

2
, K j + 1

2
.

O

jM
jC

GM j+1

C j+1
F

j+1T UjjTUj+1

Q j

Pj

Q j+1

Pj+1

E

SE

N

α

F

j+1M

C j+1

C j

FIGURE 3. Derivation ofĀryabhat.a relation.

25Gan. ita-yukti-bhās.ā, cited above, Section 7.5.1, pp. 94–96, 221–24, 417–20.



218 K. Ramasubramanian and M. D. Srinivas

Let the chord of the arcC j C j +1, be denoted byα and letR be the radius. Then
a simple argument based ontrairāśika (similar triangles) leads to the relations:26

B j +1 − B j =
( α

R

)

K j + 1
2

(42)

K j − 1
2

− K j + 1
2

=
( α

R

)

B j . (43)

Thus we get

1 j +1 − 1 j = (B j +1 − B j ) − (B j − B j −1)

= −
( α

R

)2
B j . (44)

We can also express this relation in the form

1 j +1 − 1 j = −B j (11 − 12)

B1
. (45)

The above relations are exact.Āryabhat.a’s relation(39) corresponds to the ap-
proximations,B1 ≈ 225′ and11 − 12 ≈ 1′ so that

( α

R

)2
= (11 − 12)

B1
≈
(

1

225′

)

. (46)

In Tantrasaṅgraha, Nı̄lakan. t.ha Somayāj̄ı has given the finer approximation:27

( α

R

)2
= (11 − 12)

B1
≈
(

1

2331
2
′

)

. (47)

26Equations (42) and (43) are essentially the relations:

Rsin(x + h) − Rsinx =
( α

R

)

Rcos

(

x + h

2

)

Rcos

(

x − h

2

)

− Rcos

(

x + h

2

)

=
( α

R

)

Rsinx,

with α = 2Rsin h
2 . These lead to (44) in the form:

(Rsin(x + h) − Rsinx) − (Rsinx − Rsin(x − h)) = −
( α

R

)2
Rsinx.

27Tantrasaṅgraha of Nı̄lakan. t.ha Somayāj̄ı, Ed. withLaghu-vivr. ti of Śaṅkara Vāriyar by
S. K. Pillai, Trivandrum 1958, verse 2.4, p. 17.
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This is further refined býSaṅkara Vāriyar in his commentaryLaghu-vivr. ti in the
form:28

( α

R

)2
= (11 − 12)

B1
≈
(

1

233′32′′

)

. (48)

Sinceα = 2Rsin 112′30′′, we find that the above relation is correct up to seconds.
Commenting on̄Aryabhat.a’s method of computing Rsines, Delambre had re-

marked:29

The method is curious: it indicates a method of calculating the table of sines by
means of their second-differences... This differential process has not up to now
been employed except by Briggs, who himself did not know thatthe constant
factor was the square of the chord1A (= 3◦45′) or of the interval, and who could
not obtain it except by comparing the second differences obtained in a different
manner. The Indians also have probably done the same; they obtained the method
of differences only from a table calculated previously by a geometric process.
Here then is a method which the Indians possessed and which isfound neither
amongst the Greeks, nor amongst the Arabs.

5.4. The Rsine-table of̄Aryabhat.a

In the Gı̄tikā-pāda of Āryabhat. ı̄ya, Āryabhat.a has given a table of Rsine-
differences:30ma;��a;Ka Ba;��a;Ka :P+.��a;Ka ;Da;��a;Ka :Na;��a;Ka Va;��a;Ka.z+.��a;Ka h;~å.Ja .~k+:
a;k ;
a;k+:Sga .~å.Ga;
a;k ;
a;k+:Gva Á;Gl+.
a;k ;
a;k+:g{a h;k�+.a ;Da;
a;k ;
a;k+:.
a.~ga ZJa zõÅÉ ë�ÅÉì*: �a :P C k+:l+.a;DRa:$ya;aH Á Á

225, 224, 222, 219, 215, 210, 205, 199, 191, 183, 174, 164, 154, 143, 131, 119,
106, 93, 79, 65, 51, 37, 22, and 7—these are the Rsine-differences [at intervals of
225’ of arc] in terms of the minutes of arc.

The above values follow directly from̄Aryabhat.a’s relation(39) for the second
order Rsine-differences. To start with,11 = B1 = Rsin(225′) ≈ 225′. Then we
get,12 = B1 − B1

B1
= 224′ and so on.

The Rsine-table of̄Aryabhat.a
31 (see Table 1), obtained this way, is accurate up

to minutes. In this table, we also give the Rsine values givenby Govindasvāmin

(c. 825) in his commentary onMahābhāskar̄ıya of Bhāskara I, and byMādhava

28Ibid., comm. on verse 2.4.
29Delambre,Historie de l’ Astronomie Ancienne, t 1, Paris 1817, pp. 457, 459f, cited from

B. B. Datta and A. N. Singh, ‘Hindu Trigonometry’, Ind. Jour.Hist. Sc.18, 39–108, 1983, p. 77.
30Āryabhat.ı̄ya, cited above,Gı̄tikāpāda 12, p. 29.
31See, for instance, A. K. Bag,Mathematics in Ancient and Medieval India, Varanasi 1979,

pp. 247–48.
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(c. 1340–1420) as recorded in thēAryabhat. ı̄ya-bhās. ya (c. 1502) ofNı̄lakan. t.ha

Somayāj̄ı. ThoughGovindasvāmin gives the Rsine values up to the thirds, his
values are accurate only up to the seconds; those ofMādhava are accurate up to
the thirds.

Arc-length Āryabhat.a Govindasvāmin Mādhava

(c. 499) (c. 825) (c. 1375)
3◦45′ 225′ 224′ 50′′ 23′′′ 224′ 50′′ 22′′′

7◦30′ 449′ 448′ 42′′ 53′′′ 448′ 42′′ 58′′′

11◦15′ 671′ 670′ 40′′ 11′′′ 670′ 40′′ 16′′′

15◦00′ 890′ 889′ 45′′ 08′′′ 889′ 45′′ 15′′′

18◦45′ 1105′ 1105′ 01′′ 30′′′ 1105′ 01′′ 39′′′

22◦30′ 1315′ 1315′ 33′′ 56′′ 1315′ 34′′ 07′′′

26◦15′ 1520′ 1520′ 28′′ 22′′′ 1520′ 28′′ 35′′′

30◦00′ 1719′ 1718′ 52′′ 10′′′ 1718′ 52′′ 24′′′

33◦45′ 1910′ 1909′ 54′′ 19′′′ 1909′ 54′′ 35′′′

37◦30′ 2093′ 2092′ 45′′ 46′′′ 2092′ 46′′ 03′′′

41◦15′ 2267′ 2266′ 38′′ 44′′′ 2266′ 39′′ 50′′′

45◦00′ 2431′ 2430′ 50′′ 54′′′ 2430′ 51′′ 15′′′

48◦45′ 2585′ 2584′ 37′′ 43′′′ 2584′ 38′′ 06′′′

52◦30′ 2728′ 2727′ 20′′ 29′′′ 2727′ 20′′ 52′′′

56◦15′ 2859′ 2858′ 22′′ 31′′′ 2858′ 22′′ 55′′′

60◦00′ 2978′ 2977′ 10′′ 09′′′ 2977′ 10′′ 34′′′

63◦45′ 3084′ 3083′ 12′′ 51′′′ 3083′ 13′′ 17′′′

67◦30′ 3177′ 3176′ 03′′ 23′′′ 3176′ 03′′ 50′′′

71◦15′ 3256′ 3255′ 17′′ 54′′′ 3255′ 18′′ 22′′′

75◦00′ 3321′ 3320′ 36′′ 02′′′ 3320′ 36′′ 30′′′

78◦45′ 3372′ 3371′ 41′′ 01′′′ 3371′ 41′′ 29′′′

82◦30′ 3409′ 3408′ 19′′ 42′′′ 3408′ 20′′ 11′′′

86◦15′ 3431′ 3430′ 22′′ 42′′′ 3430′ 23′′ 11′′′

90◦00′ 3438′ 3437′ 44′′ 19′′′ 3437′ 44′′ 48′′′

TABLE 1. Rsine-table of̄Aryabhat.a, Govindasvāmin andMādhava.

5.5. Brahmagupta’s second-order interpolation formula

The Rsine table of̄Aryabhat.a gives only the Rsine values for the twenty-four
multiples of 225′. The Rsines for arbitrary arc-lengths have to be found by inter-
polation only. In hisKhan. d. akhādyaka (c. 665),Brahmagupta gives a second-
order interpolation formula for the computation of Rsines for arbitrary arcs. In this
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work, which is in the form of a manual (karan. a) for astronomical calculations,
Brahmagupta uses a simpler Rsine-table which gives Rsines only at intervals of
15◦ or 900′:32ga;ta;Ba;ea;gya;Ka;Nq+.k+:a;nta:=+d;l+.
a;va;k+:l+.va;Da;a;t,a Za;tEa;nRa;va;Æa;Ba:=+a;�ya;a Áta;dùÅ;au ;�a;ta;d;lM yua;ta;ea;nMa Ba;ea;gya;a;dU ;na;a;�a;Da;kM Ba;ea;gya;m,a Á Á

Multiply the residual arc after division by 900′ by half the difference of the tabular
Rsine difference passed over (gata-khan. d. a) and to be passed over (bhogya-

khan. d. a) and divide by 900′. The result is to be added to or subtracted from half
the sum of the same tabular sine differences according as this [half-sum] is less
than or equal to the Rsine tabular difference to be passed. What results is the true
Rsine-difference to be passed over.

Let h be the basic unit of arc in terms of which the Rsine-table is constructed,
which happens to be 225′ in the case ofĀryabhat. ı̄ya, and 900′ in the case of
Khan. d. akhādyaka. Let the arc for which Rsine is to be found be given by

s = jh + ε for some j = 0, 1, . . . (49)

Now Rsin( jh) = B j are the tabulated Rsines. Then, a simple interpolation
(trairāśika) would yield

Rsin( jh + ǫ) = B j +
( ε

h

)

(B j +1 − B j )

= Rsin( jh) + ε

h
1 j +1. (50)

Instead of the above simple interpolation,Brahmagupta prescribes

Rsin( jh + ǫ) = B j +
( ε

h

)

[(

1

2

)

(1 j + 1 j +1) ±
( ε

h

) (1 j ∼ 1 j +1)

2

]

. (51)

Here, the sign is chosen to be positive if1 j < 1 j +1, and negative if1 j > 1 j +1
(as in the case of Rsine). SoBrahmagupta’s rule is actually the second-order
interpolation formula

Rsin( jh + ε) = Rsin( jh) +
( ε

h

)

[(

1

2

)

(1 j + 1 j +1) −
( ε

h

) (1 j − 1 j +1)

2

]

= Rsin( jh) +
( ε

h

) (1 j +1 + 1 j )

2
+
( ε

h

)2 (1 j +1 − 1 j )

2

= Rsin( jh) +
( ε

h

)

1 j +1 +
( ε

h

) [ ε

h
− 1

] (1 j +1 − 1 j )

2
. (52)

32Khan. d. akhādyaka of Brahmagupta, Ed. by P. C. Sengupta, Calcutta 1941, p. 151.
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6. Instantaneous velocity of a planet (tātkālika-gati)

6.1. True daily motion of a planet

In Indian Astronomy, the motion of a planet is computed by making use of two
corrections: themanda-sam. skāra which essentially corresponds to the equation
of centre and thés̄ıghra-sam. skāra which corresponds to the conversion of the
heliocentric longitudes to geocentric longitudes. Themanda correction for planets
is given in terms of an epicycle of variable radiusr , which varies in such a way
that

r

K
= r0

R
, (53)

whereK is thekarn. a (hypotenuse) or the (variable) distance of the planet from
the centre of the concentric andr0 is the tabulated (or mean) radius of the epicycle
in the measure of the concentric circle of radiusR.

r

P

P

0

R

K

U

Γ

C

α
M

∆µ

FIGURE 4. Manda correction.

In Figure 4,C is the centre of concentric on which the mean planetP0 is lo-
cated.CU is the direction of theucca (aphelion or apogee as the case may be).
P is the true planet which lies on the epicycle of (variable) radius r centered at
P0, such thatP0P is parallel toCU. If M is the mean longitude of a planet,α the
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longitude of theucca, then the correction (manda-phala) 1µ is given by

Rsin(1µ) =
( r

K

)

Rsin(M − α)

=
(r0

R

)

Rsin(M − α). (54)

For smallr , the left hand side is usually approximated by the arc itself. The
manda-correction is to be applied to the mean longitudeM, to obtain the true or
manda-corrected longitudeµ given by

µ = M −
( r0

R

)

(

1

R

)

Rsin(M − α). (55)

If nm andnu are the mean daily motions of the planet and theucca, then the true
longitude on the next day is given by

µ + n = (M + nm) −
(r0

R

)

(

1

R

)

Rsin (M + nm − α − nu). (56)

The true daily motion is thus given by

n = nm −
(r0

R

)

(

1

R

)

[ Rsin{(M − α) + (nm − nu)} − Rsin (M − α)]. (57)

The second term in the above is the correction to mean daily motion (gati-phala).
An expression for this was given byBhāskara I (c. 629) in Mahābhāskar̄ıya,
where he makes use of the approximation:33

Rsin{(M − α) + (nm − nu)}
− Rsin(M − α)

}

≈
{

(nm − nu) ×
(

1
225

)

Rsine-difference at(M − α).

(58)
In the above approximation,(nm − nu) is multiplied by tabular Rsine-difference
at the 225′ arc-bit in which (the tip of the arc) (M − α) is located. Therefore,
under this approximation, as long as the anomaly (kendra), (M − α), is in the
same multiple of 225′, there will be no change in thegati-phala or the correction
to the mean velocity. This defect was noticed byBhāskara also in his later work
Laghubhāskar̄ıya:34A;Æa;Ba;�a:�+.pa;ta;a Bua;�e +:(ãÉa;a;pa;Ba;a;ga;
a;va;.
a;a;�a:=+NaH Á.=+vea;�a:=+nd;ea;(ãÉa .j�a;a;va;a;na;a;mUa;na;Ba;a;va;a;dùÅ;a;sa;}Ba;va;a;t,a Á Á

33Mahābhāskar̄ıya of Bhāskara I, Ed. by K. S. Shukla, Lucknow 1960, verse 4.14, p. 120.
34Laghubhāskar̄ıya of Bhāskara I, Ed. by K. S. Shukla, Lucknow 1963, verses 2.14-5, p. 6.
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ya;ma;a;nea;yMa .j�a;a;va;a;Bua;�a;�+:
a;vRa;Z�a;a;ya;teRa Á
Whilst the Sun or the Moon moves in the [same] element of arc, there is no change
in the rate of motion (bhukti), because the Rsine-difference does not increase or
decrease; viewed thus, the rate of motion [as given above] isdefective.

The correct formula for the true daily motion of a planet, employing the Rcosine
as the ‘rate of change’ of Rsine, seems to have been first givenbyMuñjāla (c. 932)
in his short manualLaghumānasa 35 and also byĀryabhat.a II (c. 950) in his
Mahā-siddhānta:36k+:ea;�a;f;P+.l;Èåî ÁÁ*+� ;a Bua;�a;�+:gRa:$ya;a;Ba;�+:a k+:l+.a;
a;d;P+.l+.m,a Á Á

Thekot.iphala multiplied by the [mean] daily motion and divided by the radius
gives the minutes of the correction [to the rate of the motion].

This gives the true daily motion in the form

n = nm − (nm − nu)
(r0

R

)

(

1

R

)

Rcos(M − α). (59)

6.2. The notion of instantaneous velocity (tātkālikagati) according to
Bhāskarācārya II

Bhāskarācārya II (c. 1150) in hisSiddhāntaśiroman. i clearly distinguishes the
true daily motion from the instantaneous rate of motion. Andhe gives the Rcosine
correction to the mean rate of motion as the instantaneous rate of motion. He
further emphasizes the fact that the velocity is changing every instant and this is
particularly important in the case of Moon because of its rapid motion.37;
a;d;na;a;nta:=+~å.pa;�;Ka;ga;a;nta:=M .~ya;a;d, ga;�a;taH .~å.Pu +.f;a ta;tsa;ma;ya;a;nta:=+a;le Á Ák+:ea;f� ;a;P+.l;Èåî ÁÁ*+� ;a mxa;du ;ke +:ndÒ +Bua;�a;�+:�///�a;~:�a:$ya;ea:;dÄâx ;ta;a k+:
a;kR +:mxa;ga;a;
a;d;ke +:ndÒ e Áta;ya;a yua;ta;ea;na;a g{a;h;ma;Dya;Bua;�a;�+:~ta;a;tk+:a;�a;l+.k
 +:a ma;nd;pa;�a:=+~å.Pu +.f;a .~ya;a;t,a Á Á.sa;m�a;a;pa;�a;ta;Tya;nta;sa;m�a;a;pa;.
a;a;l+.nMa ;
a;va;Da;ea;~tua ta;tk+:a;l+ja;yEa;va yua:$ya;tea Á.sua;dU :=+sa:úãÁ*.a;a;l+.na;ma;a;dùÅ;a;ya;a ya;taH :pra;�a;ta;[a;NMa .sa;a na .sa;ma;a ma;h;tya;taH Á Á

The true daily motion of a planet is the difference between the true planets on
successive days. And it is accurate (sphut.a) over that period. Thekot.iphala
(Rcosine of anomaly) is multiplied by the rate of motion of the manda-anomaly
(mr. du-kendra-bhukti) and divided by the radius. The result added or subtracted
from the mean rate of motion of the planet, depending on whether the anomaly is
in Karkyādi or Mr. gādi, gives the true instantaneous rate of motion (tātkālik̄ı

manda-sphut.agati) of the planet.

35Laghumānasa of Muñjāla, Ed. by K. S. Shukla, New Delhi 1990, verse 3.4, p. 125.
36Mahāsiddhānta of Āryabhat.a II, Ed. by Sudhakara Dvivedi, Varanasi 1910, verse 3.15, p. 58.
37Siddhāntaśiroman. i of Bhāskarācārya, Ed. by Muralidhara Chaturvedi, Varanasi 1981,

verses 2.36–8, p. 119.
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In the case of the Moon, the ending moment of atithi38which is about to end or
the beginning time of atithi which is about to begin, are to be computed with the
instantaneous rate of motion at the given instant of time. The beginning moment
of a tithi which is far away can be calculated with the earlier [daily] rate of
motion. This is because Moon’s rate of motion is large and varies from moment
to moment.

Here,Bhāskara explains the distinction between the true daily rate of motion
and the true instantaneous rate of motion. The former is the difference between
the true longitudes on successive days and it is accurate as the rate of motion, on
the average, for the entire period. The true instantaneous rate of motion is to be
calculated from the Rcosine of the anomaly (kot.iphala) for each relevant moment.

Thus ifωm andωu are the rates of the motion of the mean planet and theucca,
thenωm − ωu is the rate of motion of the anomaly, and the true instantaneous rate
of motion of the planet at any instant is given byBhāskara to be

ω = ωm + (ωm − ωu)
(r0

R

)

(

1

R

)

Rcos(M − α), (60)

where (M − α) is the anomaly of the planet at that instant.
Bhāskara explains the idea of the instantaneous velocity even more clearly in

hisVāsanā:39A;dùÅ;a;ta;na:(õ;a;~ta;na;~å.Pu +.f;g{a;h;ya;eaH A;Ea;d;�a;ya;k+:ya;ea;
a;dR ;na;a;DRa:ja;ya;ea;va;Ra A;~ta;k+:a-;�a;l+.k+:ya;ea;va;Ra ya;d;nta:=M k+:l+.a;
a;d;kM .sa;a .~å.Pu +.f;a ga;�a;taH Á A;dùÅ;a;ta;na;a;.
CõÅÅ +.~ta;neanyUa;nea va;kÒ +:a;ga;�a;ta::℄eRa;ya;a Á ta;tsa;ma;ya;a;nta:=+a;l I+.�a;ta Á ta;~ya k+:a;l+.~yama;Dyea A;na;ya;a ga;tya;a g{a;h;(ãÉa;a;l+.�a;ya;tMua yua:$ya;ta I+.�a;ta Á I+.yMa ;
a;k+:l.~TUa;l+.a ga;�a;taH Á A;Ta .sUa;[ma;a ta;a;tk+:a;�a;l+.k
 +:a k+:Tya;tea Á tua;ñÍç ÅÅ*:+.ga;tyUa;na;a..
a;ndÒ +ga;�a;taH :ke +:ndÒ +ga;�a;taH Á A;nyea;Sa;Ma g{a;h;a;Na;Ma g{a;h;ga;�a;ta;=e +va :ke +:ndÒ +ga;�a;taH Ámxa;du ;ke +:ndÒ +k+:ea;�a;f;P+.lM kx +:tva;a .tea;na :ke +:ndÒ +ga;�a;ta;gRua;Nya;a Á ;
a:�a:$ya;ya;aBa;a:$ya;a Á l+.b.Dea;na k+:k�+.a;Ra;
a;d;ke +:ndÒ e g{a;h-ga;�a;ta;yRua;�+:a k+:a;ya;Ra Á mxa;ga;a;d;Eatua .=+
a;h;ta;a k+:a;ya;Ra Á O;;vMa ta;a;tk+:a;�a;l+.k
 +:a ma;nd;pa;�a:=+~å.Pu +.f;a .~ya;a;t,a Áta;a;tk+:a;�a;l+.k�+.a;a Bua;��+.a;a ..
a;ndÒ +~ya ;
a;va;
a;Za;�M :pra;ya;ea-.ja;na;m,a Á ta;d;a;h
‘ .sa;m�a;a;pa;�a;ta;Tya;nta;sa;m�a;a;pa;.
a;a;l+.na;m,a’ I+.�a;ta Á ya;tk+:a;�a;l-k+:(ãÉa;ndÒ H ta;sma;a;t,ak+:a;l+.a;�ç Å +ta;ea va;a ga;}ya;ea va;a ya;d;a;sa;�a;�/////�a;~ta;tTya;nta;~ta;d;a ta;a;tk+:a;�a;l+.k�+.a;aga;tya;a ;�a;ta;�a;Ta;sa;a;Da;nMa k+:t ua yua:$ya;tea Á ta;Ta;a .sa;m�a;a;pa;.
a;a;l+.nMa ..
a Á ya;d;a tuadU :=+ta:=+�/////�a;~ta;Tya;nta;ea dU :=+.
a;a;l+.nMa va;a ..
a;ndÒ +~ya ta;d;a;dùÅ;a;ya;a .~TUa;l+.ya;a k+:t uayua:$ya;tea Á .~TUa;l+.k+:a;l+.tva;a;t,a Á ya;ta;(ãÉa;ndÒ +ga;�a;ta;mRa;h;tva;a;t,a :pra;�a;ta;[a;NMa .sa;ma;a naBa;va;�a;ta A;ta;~ta;d;TRa;ma;yMa ;
a;va;Zea;Sa;eaY;Æa;Ba;
a;h;taH Á

38Tithi is the time taken by the Moon to lead the Sun exactly by 12◦ in longitude.
39Siddhāntaśiroman. i, cited above,Vāsanā on 2.36–38, p. 119–20.



226 K. Ramasubramanian and M. D. SrinivasA;Ta ga;�a;ta;P+.l+.va;a;sa;na;a Á A;dùÅ;a;ta;na:(õ;a;~ta;na;g{a;h;ya;ea:=+nta:=M ga;�a;taH Á A;taO;;va g{a;h;P+.l+.ya;ea:=+nta:=M ga;�a;ta;P+.lM Ba;
a;va;tua;ma;hR ;�a;ta Á A;Ta ta;tsa;a;Da;na;m,a ÁA;dùÅ;a;ta;na:(õ;a;~ta;na;ke +:ndÒ +ya;ea:=+nta:=M :ke +:ndÒ +ga;�a;taH Á Bua:ja:$ya;a;k+.=+Nea ya;;�ÂåÅ +ea;gya-Ka;NqM .tea;na .sa;a gua;Nya;a Za:=+
a;dõ ;d;~åò:EaH (225) Ba;a:$ya;a Á ta:�a ta;a;va;t,ata;a;tk+:a;�a;l+.k+:Ba;ea;gya;Ka;Nq+.k+.=+Na;a;ya;a;nua;pa;a;taH Á ya;
a;d ;
a:�a:$ya;a;tua;�ya;ya;ak+:ea;�a;f-.$ya;ya;a;dùÅ;aM Ba;ea;gya;Ka;NqM Za:=+
a;dõ ;d;~åò:a;tua;�yMa l+.Bya;tea ta;de ;�;ya;a;
a;k+:Æa;ma;tya:�a k+:ea;�a;f:$ya;a;ya;aH Za:=+
a;dõ ;d;~åò:a;a gua;Na;�///�a;~:�a:$ya;a h:=H Á:P+.lM ta;a;tk+:a;�a;l+.kM .~å.Pu +.f-Ba;ea;gya;Ka;NqM .tea;na :ke +:ndÒ +ga;�a;ta;gRua;Na;n�a;a;ya;aZa:=+
a;dõ ;d;~åò:Ea;Ba;Ra:$ya;a ÁA:�a Za:=+
a;dõ ;d;~åò:a;Æa;ma;ta;ya;ea;gRua;Na;k+:Ba;a:ja;k+:ya;ea;~tua;�ya;tva;a;�a;a;Zea kx +:tea :ke +:ndÒ -ga;teaH k+:ea;�a;f:$ya;a;gua;Na;�///�a;~:�a:$ya;a;h:=H .~ya;a;t,a Á :P+.l+.ma;dùÅ;a;ta;na:(õ;a;~ta;na;ke +:ndÒ -d;ea:$yRa;ya;ea:=+nta:=M Ba;va;�a;ta Á ta;tP+.l+.k+.=+Na;a;T a .~va;pa;�a:=+�a;Da;na;a gua;NyMa Ba;Ma;ZEaH
(360) Ba;a:$ya;m,a Á :pUa;v a ;
a;k+:l gua;Na;kH k+:ea;�a;f:$ya;a .sa;a ya;a;va;t,a :pa;�a:=+�a;Da;na;agua;Nya;tea Ba;Ma;ZEaH ;
a;hò ;ya;tea ta;a;va;tk+:ea;�a;f;P+.lM .ja;a;ya;ta I+.tyua;pa;pa;�Ma ‘k+:ea;f� ;a-:P+.l;Èåî ÁÁ*+� ;a mxa;du ;ke +:ndÒ +Bua;�a;�’ :�a:=+tya;a;
a;d Á O;;va;ma;dùÅ;a;ta;na:(õ;a;~ta;na;g{a;h;P+.l+.ya;ea:=+nta:=Mta;�ç Å +teaH :P+.lM k+:k�+.a;Ra;
a;d;ke +:ndÒ e g{a;h;NRa;P+.l+.~ya;a;pa;.
�a;a;ya;ma;a;na;tva;a;t,a tua;l+.a;d;Ea;Da;na;P+.l+.~ya;a;pa;.
�a;a;ya;ma;a;na;tva;a;t,a ;Da;na;m,a Á ma;k+.=+a;d;Ea tua ;Da;na;P+.l+.~ya;a;pa;.
�a;a-ya;ma;a;na;tva;a;t,a mea;Sa;a;d;a;vxa;Na;P+.l+.~ya;ea;pa;.
�a;a;ya;ma;a;na;tva;a;dx ;Na;m,a I+.tyua;pa;pa;�a;m,a Á
The true daily velocity is the difference in minutes etc., between the true planets
of today and tomorrow, either at the time of sunrise, or mid-day or sunset. If to-
morrow’s longitude is smaller than that of today, then we should understand the
motion to be retrograde. It is said “over that period”. This only means that, dur-
ing that intervening period, the planet is to move with this rate [on the average].
This is only a rough or approximate rate of motion. Now we shall discuss the
instantaneous rate of motion... In this way, themanda-corrected true instanta-
neous rate of motion (tātkālik̄ı manda-parisphut.agati) is calculated. In the
case of Moon, this instantaneous rate of motion is especially useful...Because of
its largeness, the rate of motion of Moon is not the same everyinstant. Hence, in
the case of Moon, the special [instantaneous] rate of motionis stated.

Then, the justification for the correction to the rate of motion (gati-phala-
vāsanā). . .The rate of motion of the anomaly is the difference in the anomalies of
today and tomorrow. That should be multiplied by the [current] Rsine-difference
used in the computation of Rsines and divided by 225. Now, thefollowing rule
of three to obtain the instantaneous Rsine-difference: If the first Rsine-difference
225 results when the Rcosine is equal to the radius, then how much is it for the
given Rcosine. In this way, the Rcosine is to be multiplied by225 and divided
by the radius. The result is the instantaneous Rsine-difference and that should be
multiplied by the rate of motion in the anomaly and divided by225. . .

Thus,Bhāskara is here conceiving also of an instantaneous Rsine-difference,
though his derivation of the instantaneous velocity is somewhat obscure. These
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ideas are more clearly set forth in theĀryabhat. ı̄ya-bhās. ya (c. 1502) ofNı̄lakan. t.ha

Somayāj̄ı and other works of the Kerala School.

6.3. The ś̄ıghra correction to the velocity and the condition for retrograde
motion

Bhāskara then goes on to derive the correct expression for the true rate of motion
as corrected by thés̄ıghra-correction. In the language of modern astronomy, the
ś̄ıghra-correction converts the heliocentric longitude of the planets to the geocen-
tric longitudes. Here also, the Indian astronomers employ an epicycle, but with a
fixed radius, unlike in the case of themanda-correction.

If µ is themanda-corrected (manda-sphut.a) longitude of the planet,ζ is the
longitude of thés̄ıghrocca, andrs, the radius of thés̄ıghra-epicycle, then the cor-
rection (́s̄ıghra-phala) 1σ is given by

Rsin(1σ) =
( rs

K

)

Rsin (µ − ζ ), (61)

where(µ − ζ ) is the ś̄ıghrakendra andK is the hypotenuse (ś̄ıghrakarn. a) given
by

K 2 = R2 + r 2
s − 2Rrs cos(µ − ζ ). (62)

The calculation of thés̄ıghra-correction to the velocity is indeed much more dif-
ficult as the denominator in (61), which is the hypotenuse which depends on
the anomaly, also varies with time in a complex way. This has been noted by
Bhāskara who was able to obtain the correct form of theś̄ıghra-correction to the
velocity (́s̄ıghra-gati-phala) in an ingenious way.40:P+.l+.Ma;Za;Ka;a;ñÍö�ÅÅ*:+.a;nta:=+
a;Za;�a:úêÁÁ*+;n�a;a.Èåî ÁÁ*+� ;a dÒ +a;ë�Åë�Á*:e +:ndÒ +Bua;�a;�H (rua;�a;ta;&+.
a;dõ ;Za;ea;Dya;a Á.~va;Z�a;a;Gra;Bua;�e H .~å.Pu +.f;Kea;f;Bua;�a;�H Zea;SMa ..
a va;kÒ +:a ;
a;va;pa:=� +a;ta;Zua:;dÄâ ;Ea Á Á

The Rsine of ninety degrees, less the degrees ofś̄ıghra-correction for the longi-
tude (́s̄ıghra-phala), should be multiplied by the rate of motion of theś̄ıghra-
anomaly (drāk-kendra-bhukti) and divided by the hypotenuse (ś̄ıghra-karn. a).
This, subtracted from the rate of motion of theś̄ıghrocca, gives the true velocity
of the planet. If this is negative, the planet’s motion is retrograde.

If ω is the rate of motion of themanda-corrected planet andωs is the rate of
motion of thés̄ıghrocca, then the rate of motion of thés̄ıghra-anomaly is(ω−ωs),

40Siddhāntaśiroman. i, cited above, verse 2.39, p. 121.
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and the true velocity of the planetωt is given by

ωt = ωs −
[

(ωs − ω)Rcos(1σ)

K

]

. (63)

The details of the ingenious argument given byBhāskara for deriving the correct
form (63) of thés̄ıghra-correction to the velocity has been outlined by D. Arkaso-
mayaji in his translation ofS̄ıddhāntaśiroman. i.

41

SinceBhāskara’s derivation is somewhat long-winded, here we shall present
a modern derivation of the result just to demonstrate that the expression given by
Bhāskara is indeed exact.

K
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θ

∆σ
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r

FIGURE 5a. Velocity of a planet as seen from the Earth.

In Figure 5a, S, E and P represent the positions of the Sun, Earth and an
exterior planet respectively. Letv andvs be the linear velocities of the planet and
the Earth with respect to the Sun.P P′ andE E′ are lines perpendicular to the line
E P joining the Earth to the planet. LetR, r represent the radii of the orbits of
the planet and the Earth (assumed to be cicular) around the Sun respectively and
K , the distance of the planet from the Earth. For an exterior planet, thés̄ıghra-
correction1σ is given by the angleSP̂ E.

41D. Arkasomayaji,Siddhāntaśiroman. i of Bhāskarācārya, Tirupati 1980, pp. 157–161.
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If vt is the linear velocity of the planet as seen from the Earth, then the angular
velocity is given by

ωt = dθ

dt
= vt

K
. (64)

The magnitude ofvt in terms ofv andvs (for the situation depicted in Figure 5a)
is

vt = v cos1σ + vs cosθ. (65)

Also, from the triangleSE P, the distance of the planet from the Earth—known as
karn. a, and denotedK in the figure—may be expressed as

K = Rcos1σ + r cosθ,

or cosθ = K − Rcos1σ

r
. (66)

Using (66) in (65) we have

vt = v cos1σ + vs

r
(K − Rcos1σ)

= vsK

r
+ cos1σ

(

v − vs
R

r

)

or
vt

K
= vs

r
+

cos1σ
(

v − vs
R
r

)

K
. (67)

Making use of (64) and the fact thatv = Rω andvs = r ωs, the above equation
reduces to

ωt = ωs −
[

(ωs − ω)Rcos1σ

K

]

,

which is same as the expression given by Bh āskara (63).
Bhāskara in hisVāsanā42 explains as to why in thés̄ıghra process a different

procedure for finding the rate of motion of the planet has to beemployed than the
one used in themanda process:A:�a;ea;pa;pa;
a:�aH Á A;dùÅ;a;ta;na:(õ;a;~ta;na;Z�a;a;Gra;P+.l+.ya;ea:=+nta:=M ga;teaH Z�a;a;Gra;P+.lM .~ya;a;t,a Áta;�a ya;Ta;a ma;a;ndM ga;�a;ta;P+.lM g{a;h;P+.l+.va;d;a;n�a;a;tMa ta;Ta;a ya;dùÅ;a;a;n�a;a;ya;tea kx +:teaY;
a;pak+:Na;Ra;nua;pa;a;tea .sa;a;nta:=+mea;va .~ya;a;t,a Á ya;Ta;a ;D�a;a;vxa;�a:;dÄâ ;de Á na ;
a;h :ke +:ndÒ +ga;�a;ta:ja;mea;va

42Ibid., Vāsanā on 2.39.
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a;k+:ntva;nya;d;
a;pa A;dùÅ;a;ta;na;Bua:ja;P+.l+(õ;a;~ta;na;Bua:ja-:P+.l+.a;nta:=e ;
a:�a:$ya;a;gua;NeaY;dùÅ;a;ta;na;k+:NRa;&+.tea ya;a;dx ;ZMa :P+.lM na ta;a;dx ;ZMa (õ;a;~ta;na-k+:NRa;&+.tea Á .~va;�pa;a;nta:=e Y;
a;pa k+:NeRa Ba;a:$ya;~ya ba;hu ;tva;a;d, ba;�ë+:nta:=M .~ya;a;
a;d-tyea;ta;d;a;na;ya;nMa ;
a;h;tva;a;nya;t,a ma;h;a;ma;�a;ta;ma;
a;;�ÂåÅ H k+:�//////�a;�pa;ta;m,a Á ta;dùÅ;a;Ta;a...
Here is the justification. Thés̄ıghra-correction to the rate of motion is the dif-
ference between thés̄ıghra-phalas of today and tomorrow. If that is derived in
the same way as themanda-correction to the rate of motion, the result will be
incorrect even if it were to be divided by the hypotenuse (ś̄ıghra-karn. a)... The
difference is not just due to the change in the anomaly [whichis the argument
of the Rsine] but also otherwise... The result of dividing bytoday’s hypotenuse
is different from that of dividing by that of tomorrow. Even if the hypotenuses
turn out to differ by small amount, the quantities they divide are large and thus
a large difference could result. Hence, this way of approach[which was adopted
in the case ofmanda-correction to the rate of the motion] has been forsaken and
another has been devised by the great intellects. That is as follows...

6.4. The equation of centre is extremum when the velocity correction van-
ishes

Later, in theGolādhyāya of Siddhāntaśiroman. i, Bhāskara considers the situa-
tion when the correction to the velocity (gati-phala) vanishes:43k+:[ya;a;ma;Dya;ga;�a;ta;yRa;g{ea;Ka;a;pra;�a;ta;vxa:�a;sMa;pa;a;tea Áma;DyEa;va ga;�a;taH .~å.pa;�;a :pa:=M :P+.lM ta:�a Kea;f;~ya Á Á

Where the [North-South] line perpendicular to the [East-West] line of apsides
through the centre of the concentric meets the eccentric, there the mean velocity
itself is true and the equation of centre is extremum.

In his Vāsanā, Bhāskara explains this correlation between vanishing of the
velocity correction and the extrema of the correction to theplanetary longitude:44k+:[ya;a;vxa:�a;ma;Dyea ya;a ;�a;ta;yRa;g{ea;Ka;a ta;~ya;aH :pra;�a;ta;vxa:�a;~ya ..
a yaH .sMa;pa;a;ta;~ta:�ama;DyEa;va ga;�a;taH .~å.pa;�;a Á ga;�a;ta;P+.l+.a;Ba;a;va;a;t,a Á ;
a;kM +:.
a ta:�a g{a;h;~ya :pa:=+mMa :P+.lM.~ya;a;t,a Á ya:�a g{a;h;~ya :pa:=+mMa :P+.lM ta:�Ea;va ga;�a;ta;P+.l+.a;Ba;a;vea;na Ba;
a;va;ta;v.ya;m,a Áya;ta;eaY;dùÅ;a;ta;na:(õ;a;~ta;na;g{a;h;ya;ea:=+nta:=M ga;�a;taH Á :P+.l+.ya;ea:=+nta:=M ga;�a;ta;P+.l+.m,a Ág{a;h, :~ya ga;tea;va;Ra :P+.l+.a;Ba;a;va;~Ta;a;na;mea;va ;Da;na;NRa;sa;�////�a;nDaH Á ya;t,a :pua;na;lR +.�+:ea;�M

‘ma;DyEa;va ga;�a;taH .~å.pa;�;a vxa:�a;dõ ;ya;ya;ea;ga;gea dùÅ;au ;.
a:=e ’ I+.�a;ta ta;d;sa;t,a Á na ;
a;hvxa:�a;dõ ;ya;ya;ea;gea g{a;h;~ya :pa:=+mMa :P+.l+.m,a Á
The mean rate of motion itself is exact at the points where theline perpendicular
[to the line of apsides], at the middle of the concentric circle, meets the eccentric

43Siddhāntaśiroman. i, cited above,Golādhyāya 4.39, p. 393.
44Ibid., Vāsanā onGolādhyāya 4.39.
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circle. Because, there is no correction to the rate of motion[at those points]. Also,
because there the equation of centre [or correction to the planetary longitudes] is
extreme. Wherever the equation of centre is maximum, there the correction to the
velocity should be absent. Because, the rate of motion is thedifference between
the planetary longitudes of today and tomorrow. The correction to the velocity is
the difference between the equations of centre. The place where the correction to
the velocity vanishes, there is a change over from positive to the negative. And,
what has been stated byLalla, “the mean rate of motion is itself true when the
planet is on the intersection of the two circles [concentricand eccentric]”, that is
incorrect. The planet does not have maximum equation of centre at the confluence
of the two circles.

E

W

N S
C

C’

FIGURE 5b. Equation of centre is extremum where the correc-
tion to velocity vanishes.

Bhāskara explains that when the anomaly is ninety degrees, or the meanplanet
is at N along the lineC N perpendicular to the line of apsidesC E (see Figure
5b), the equation of centre is maximum. It is precisely then that the correction to
the velocity vanishes, as it changes sign from positive to negative. It is incorrect
to state (as Lalla did in hiśSis.yadh̄ıvr. ddhida-tantra) that the correction to the
velocity is zero at the point where the concentric and eccentric meet.

7. Surface area and volume of a sphere

In Āryabhat. ı̄ya (Golapāda 7), the volume of a sphere has been incorrectly es-
timated as the product of the area of a great circle by its square-root. Śr̄ıdhara
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(c. 750) seems to have given the correct expression for the volume of a sphere
(Trísatikā 56), though his estimate ofπ is fairly off the mark. Bhāskarācārya

(c. 1150) has given the correct relation between the diameter, the surface area and
the volume of a sphere in hisL̄ılāvat̄ı:45vxa:�a;[ea:�ea :pa;�a:=+�a;Da;gua;
a;Na;ta;v.ya;a;sa;pa;a;dH :P+.lM ya;t,a[ua;NNMa :vea;dE :�+:pa;�a:= :pa;�a:=+taH k+:ndu ;k+:~yea;va .ja;a;l+.m,a Ága;ea;l+.~yEa;vMa ta;d;
a;pa ..
a :P+.lM :pxa;�;jMa v.ya;a;sa;�a;na.Èåî ÁÁ*+M:Sa;
a:ñÂ ÅÅå*.+:BRa;�M Ba;va;�a;ta ;�a;na;ya;tMa ga;ea;l+.ga;BeRa ;Ga;na;a;K.ya;m,a Á Á

In a circle, the circumference multiplied by one-fourth thediameter is the area,
which, multiplied by four, is its surface area going around it like a net around
a ball. This [surface area] multiplied by the diameter and divided by six is the
volume of the sphere.

The surface area and volume of a sphere have been discussed ingreater detail
in theSiddhāntaśiroman. i (Golādhyāya 2.53-61), whereBhāskara has also pre-
sented theupapatti or justification for the results in his commentaryVāsanā. As
regards the surface area of the sphere,Bhāskara argues as follows:46A;Ta ba;a;l+.a;va;ba;ea;Da;a;T a ga;ea;l+.~ya;ea;pa;�a:= d;ZRa;yea;t,a Á BUa;ga;ea;lM mxa;Nma;yMa d;a:�+:ma;yMava;a kx +:tva;a tMa ..
a;kÒ +:k+:l+.a;pa;�a:=+�a;DMa (21600) :pra;k+:�pya ta;~ya ma;~ta;ke ;
a;ba;ndMukx +:tva;a ta;sma;a;
a;dõâ â ;nd;ea;ga;eRa;l+.Sa;NNa;va;�a;ta;Ba;a;gea;na Za:=+
a;dõ ;d;~åò:a;sa;*ñÍËÉ ù Á+;ae ;na (225);Da;nUa:�+.pea;NEa;va vxa:�a:=e +Ka;a;mua;tpa;a;d;yea;t,a Á :pua;na;~ta;sma;a;de ;va ;
a;ba;nd;eaH .tea;nEa;va ;
a;dõ ;gua;Na-.sUa:�ea;Na;a;nya;Ma ;
a:�a;gua;Nea;na;a;nya;a;mea;vMa ..
a;tua;
a;v a;Za;�a;ta;gua;NMa ya;a;va;�a;tua;
a;v a;Za;�a;ta;vRxa:�a;a;�a;naBa;va;�////�a;nta Á O;;Sa;Ma vxa:�a;a;na;Ma Za:=+nea:�a;ba;a;h;vaH (225) I+.tya;a;d� ;a;�a;na .$ya;a;Da;Ra;�a;nav.ya;a;sa;a;Da;Ra;�a;na .~yuaH Á .tea;Bya;eaY;nua;pa;a;ta;a;dõx :�a;pra;ma;a;Na;a;�a;na Á ta:�a ta;a;va;d;ntya-vxa:�a;~ya ma;a;nMa ..
a;kÒ +:k+:l+.aH (21600) Á ta;~ya v.ya;a;sa;a;D a ;
a:�a:$ya;a 3438 Á.$ya;a;Da;Ra;�a;na ..
a;kÒ +:k+:l+.a;gua;Na;a;�a;na ;
a:�a:$ya;a;Ba;�+:a;�a;na vxa:�a;ma;a;na;a;�a;na .ja;a;ya;ntea Ádõ ;ya;ea;dõR ;ya;ea;vRxa:�a;ya;ea;mRa;Dya O;;kE +:kM va;l+.ya;a;k+:a:=M [ea:�a;m,a Á ta;a;�a;na ..
a;tua;
a;v a;Za;�a;taH Ába;hu :$ya;a;pa;[ea ba;hU ;�a;na .~yuaH Á ta:�a ma;h;d;Da;ea;vxa:�Ma BUa;Æa;ma;mua;pa;�a:=+ta;nMa l+.Gua;mua;KMaZa:=+
a;dõ ;d;~åò:a;Æa;ma;tMa l+.}bMa :pra;k+:�pya l+.}ba;gua;NMa ku +:mua;Ka;ya;ea;ga;a;DRa;Æa;ma;tyea;vMa :pxa;Ta;k,:pxa;Ta;k, :P+.l+.a;�a;na Á .tea;Sa;Ma :P+.l+.a;na;Ma ya;ea;ga;ea ga;ea;l+.a;DRa;pxa;�+P+.l+.m,a Á ta;	a;�ë +gua;NMa.sa;k+:l+.ga;ea;l+.pxa;�+P+.l+.m,a Á ta;dõùÅ;a;a;sa;pa;�a:=+�a;Da;Ga;a;ta;tua;�ya;mea;va .~ya;a;t,a Á

In order to make the point clear to a beginner, the teacher should demonstrate it
on the surface of a sphere. Make a model of the earth in clay or wood and let its
circumference be 21, 600 minutes. From the point at the top of the sphere at an
arc-distance of 1/96th of the circumference, i.e., 225′, draw a circle. Similarly
draw circles with twice, thrice,... twenty-four times 225′ [as the arc-distances] so

45Lı̄lāvat̄ı, cited above (fn. 5), verse 203, p. 79–80.
46Siddhāntaśiroman. i, cited above,Vāsanā onGolādhyāya 2.57, p. 362.
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that there will be twenty-four circles. These circles will have as there radii Rsines
starting from 225′. The measure [circumference] of the circle will be in propor-
tion to these radii. Here, the last circle has a circumference 21, 600′ and its radius
is 3, 438′. The Rsines multiplied by 21, 600 and divided by the radius [3, 438]
will give the [circumference] measure of the circles. Between any two circles,
there is an annular region and there are twenty-four of them.If more [than 24]
Rsines are used, then there will be as many regions. In each figure [if it is cut and
spread across as a trapezium] the larger lower circle may be taken as the base and
the smaller upper circle as the face and 225′ as the altitude and the area calculated
by the usual rule: [Area is] altitude multiplied by half the sum of the base and
face. The sum of all these areas is the area of half the sphere.Twice that will be
the surface area of the entire sphere. That will always be equal to the product of
the diameter and the circumference.

HereBhāskara is taking the circumference to beC = 21, 600′, and the corre-
sponding radius is approximated asR ≈ 3, 438′. As shown in Figure 6, circles
are drawn parallel to the equator of the sphere, each separated in latitudes by 225′.
This divides the northern hemisphere into 24 strips, each ofwhich can be cut and
spread across as a trapezium. If we denote the 24 tabulated Rsines byB1, B2,...
B24, then the areaA j of j -th trapezium will be

A j =
(

C

R

)

(B j + B j +1)

2
225.

Therefore, the surface areaSof the sphere is estimated to be

S= 2

(

C

R

)[

B1 + B2 + ...B23 +
(

B24

2

)]

(225). (68)

Now,Bhāskara states that the right hand side of the above equation reducesto
2C R. This can be checked by usingBhāskara’s Rsine-table.Bhāskara himself
has done the summation of the Rsines in hisVāsanā on the succeeding verses,47

where he gives another method of derivation of the area of thesphere, by cutting
the surface of the sphere into lunes. In that context, he computes the sum

B1 + B2.... + B23 +
(

B24

2

)

= B1 + B2.... + B23 + B24 −
(

R

2

)

≈ 54233− 1719= 52514. (69)

47Siddhāntaśiroman. i, cited above,Vāsanā onGolādhyāya 2.58–61, p. 364.
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FIGURE 6. Surface area of a sphere.

Thus, according toBhāskara’s Rsine table
[

B1 + B2 + .... + B23 +
(

B24

2

)]

(225) = 52514× (225)

= 11815650

≈ (3437.39)2. (70)

Taking this asR2 = (3438)2, we obtain the surface area of the sphere to be48

S = 2

(

C

R

)

R2 = 2C R. (71)

Of course, the grossness of the result (70) is due to the fact that the quadrant of the
circumference was divided into only 24 bits.Bhāskara also mentions that we may
consider dividing the circumference into many more arc-bits, instead of the usual
24 divisions which are made for computing Rsine-tables. This is the approach
taken inYuktibhās. ā, where the circumference of the circle is divided into a large

48As has been remarked by one of the reviewers, it is indeed intriguing theBhāskara chose to
sum the tabular Rsines numerically, instead of making use ofthe relation between Rsines and Rcosine-
differences which was well known since the time ofĀryabhat.a. In fact, the proof given inYuk-

tibhās. ā (cited below in fn. 49) makes use of the relation between the Rsines and the second order
Rsine-differences to estimate this sum.
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number,n, of equal arc-bits. If1 is the Rsine of each arc-bit, the surface area is
estimated to be

S = 2

(

C

R

)

(B1 + B2 + ....Bn)(1). (72)

Then it is shown that in the limit of largen,

(B1 + B2 + ....Bn)(1) ≈ R2, (73)

which leads to the result 2C R for the surface area.49

As regards the volume of a sphere,Bhāskara’s justification is much simpler:50ga;ea;l+.pxa;�+P+.l+.~ya v.ya;a;sa;gua;
a;Na;ta;~ya :Sa;qM +.Za;ea ;Ga;na;P+.lM .~ya;a;t,a ÁA:�a;ea;pa;pa;
a:�aH Á :pxa;�+P+.l+.sa;*ñÍËÉ ùÁ+;a;a;�a;na .�+.pa;ba;a;hU ;�a;na v.ya;a;sa;a;DRa;tua;�ya;vea;Da;a;�a;na.sUa;.
�a;a;Ka;a;ta;a;�a;na ga;ea;l+.pxa;�e :pra;k+:�pya;a;�a;na Á .sUa;.
ya;g{a;a;Na;Ma ga;ea;l+.ga;BeRa .sMa;pa;a;taH ÁO;;vMa .sUa;.
�a;a;P+.l+.a;na;Ma ya;ea;ga;ea ;Ga;na;P+.l+.Æa;ma;tyua;pa;pa;�a;m,a Á ya;t,a :pua;naH[ea:�a;P+.l+.mUa;le +.na [ea:�a;P+.lM gua;
a;Na;tMa ;Ga;na;P+.lM .~ya;a;
a;d;�a;ta ta;t,a :pra;a;yaH..
a;tua;veRa;d;a;.
a;a;yRaH :pa:=+ma;ta;mua;pa;nya;~ta;va;a;n,a Á
The surface area of a sphere multiplied by its diameter and divided by six is its
volume. Here is the justification. As many pyramids as there are units in the sur-
face area with bases of unit side and altitude equal to the semi-diameter should
be imagined on the surface of the sphere. The apices of the pyramids meet at the
centre of the sphere. Then the volume of the sphere is the sum of the volumes
of the pyramids and thus our result is justified. The view thatthe volume is the
product of the area times its own root, is perhaps an alien view (paramata) that
has been presented byCaturavedācārya [Pr.thūdakasvāmin].

We may note that it is thēAryabhat. ı̄ya rule which is referred to asparamata
in the above passage.Bhāskara’s derivation of the volume of a sphere is similar
to that of the area of a circle by approximating it as the sum ofthe areas of a
large numbers of triangles with their vertices at the centre, which is actually the
proof given inYuktibhās. ā. In the case of the volume of a sphere,Yuktibhās. ā,
however, gives the more “standard” derivation, where the sphere is divided into
a large number of slices and the volume is found as the sum of the volumes of
the slices—which ultimately involves estimating the sum ofsquares of natural
numbers (varga-saṅkalita), 12 + 22 + 32 + ... + n2, for largen.51

49Gan. ita-yukti-bhās.ā, cited above, Section 7.18, pp. 140–42, 261–63, 465–67. In modern ter-

minology, this amounts to the evaluation of the integral
∫

π
2

0 Rsinθ Rdθ = R2.
50Siddhāntaśiroman. i, cited above,Vāsanā onGolādhyāya 2.61, p. 364.
51Gan. ita-yukti-bhās.ā, cited above, Section 7.19, pp. 142–45, 263–66, 468–70.
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PART II : W ORK OF THE KERALA SCHOOL

Mādhava toŚaṅkara Vāriyar (c. 1350–1550CE)

8. Kerala School of Astronomy

The Kerala School of Astronomy in the medieval period, pioneered byMādhava

(c. 1340–1420) ofSaṅgamagrāma, extended well into the 19th century as exem-
plified in the work ofŚaṅkaravarman (c. 1830),Rājā of Kad.attanad.u. Only
a couple of astronomical works ofMādhava (Ven. vāroha andSphut.acandrāpti)
seem to be extant now. Most of his celebrated mathematical discoveries—such as
the infinite series forπ and the sine and cosine functions—are available only in
the form of citations in later works.

Mādhava’s discipleParameśvara (c. 1380–1460) ofVat.asseri, is reputed to
have carried out detailed observations for over 50 years. A large number of orig-
inal works and commentaries written by him have been published. However, his
most important work on mathematics, the commentaryVivaran. a on L̄ılāvat̄ı of
Bhāskara II, is yet to be published.

Nı̄lakan. t.ha Somayāj̄ı (c. 1444–1550) of Kun.d. agrāma, disciple of
Parameśvara’s son Dāmodara (c. 1410–1520), is the most celebrated mem-
ber of Kerala School afterMādhava. Nı̄lakan. t.ha has cited several important
results ofMādhava in his various works, the most prominent of them being
Tantrasaṅgraha (c. 1500) andĀryabhat. ı̄ya-bhās. ya. In the latter work, while
commenting onGan. itapāda of Āryabhat. ı̄ya, Nı̄lakan. t.ha has also dealt exten-
sively with many important mathematical issues.

However, the most detailed exposition of the work of the Kerala School, start-
ing from Mādhava, and including the seminal contributions ofParameśvara,

Dāmodara andNı̄lakan. t.ha, is to be found in the famous Malayalam workYuk-
tibhās. ā (c. 1530) ofJyes.t.hadeva (c. 1500–1610).Jyes.t.hadeva was also a dis-
ciple of Dāmodara but junior toNı̄lakan. t.ha. The direct lineage fromMādhava

continued at least tillAcyuta Písārat.i (c. 1550–1621), a disciple ofJyes.t.hadeva,
who wrote many important works and a couple of commentaries in Malayalam
also.

At the very beginning ofYuktibhās. ā, Jyes.t.hadeva states that he intends to
present the rationale of the mathematical and astronomicalresults and procedures
which are to be found inTantrasaṅgraha of Nı̄lakan.t.ha. Yuktibhās. ā, compris-
ing 15 chapters, is naturally divided into two parts, Mathematics and Astronomy.
Topics in astronomy proper, so to say, are taken up for consideration only from the
eighth chapter onwards, starting with a discussion on mean and true planets.
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The first seven chapters ofYuktibhās. ā are in fact in the nature of an inde-
pendent treatise on mathematics and deal with various topics which are of rele-
vance to astronomy. It is here that one finds detailed demonstrations of the re-
sults ofMādhava such as the infinite series forπ , the arc-tangent, sine and the
cosine functions, the estimation of correction terms and their use in the genera-
tion of faster convergent series. Demonstrations are also provided for the classi-
cal results ofĀryabhat.a (c. 499) onkut.t.ākāra (linear indeterminate equations),
of Brahmagupta (c. 628) on the diagonals and the area of a cyclic quadrilat-
eral, and ofBhāskara II (c. 1150) on the surface area and volume of a sphere.
Many of these rationales have also been presented mostly in the form of San-
skrit verses býSaṅkara Vāriyar (c. 1500–1560) ofTr.kkut.aveli in his commen-
tariesKriyākramakar̄ı (c. 1535) onL̄ılāvat̄ı of Bhāskara II andYukti-d̄ıpikā on
Tantrasaṅgraha of Nı̄lakan. t.ha. In fact, Śaṅkara Vāriyar ends his commentary
on the first chapter ofTantrasaṅgraha with the acknowledgement:52I+.tyea;Sa;a :pa:=+kÒ +:ea;q+.a;va;a;sa;
a;dõ :ja;va:=+sa;m�a;a;�a:=+ta;ea ya;eaY;TRaH Á.sa tua ta:n:�a;sa;ñÍç ÅÅ*:" +.h;~ya :pra;Ta;meaY;Dya;a;yea ma;ya;a k+:�a;Ta;taH Á Á

Whatever has been the meaning as expounded by the nobledvija of Parakrod. a

[Jyes.t.hadeva] the same has now been stated by me for the first chapter of
Tantrasaṅgraha.

In the following sections we shall present an overview of thecontribution of the
Kerala School to the development of calculus (during the period 1350–1500), fol-
lowing essentially the exposition given inYuktibhās. ā. In order to indicate some
of the concepts and methods developed by the Kerala astronomers, we first take
up the issue of irrationality ofπ and the summation of infinite geometric series
as discussed byNı̄lakan. t.ha Somayāj̄ı in his Āryabhat. ı̄ya-bhās. ya. We then con-
sider the derivation of binomial series expansion and the estimation of the sum of
integral powers of integers, 1k + 2k + . . . + nk for largen, as presented inYuk-
tibhās. ā. These results constitute the basis for the derivation of the infinite series
for π

4 due toMādhava. We shall outline this as also the very interesting work
of Mādhava on the estimation of the end-correction terms and the transforma-
tion of theπ-series to achieve faster convergence. Finally we shall summarize the
derivation of the infinite series for Rsine and Rcosine due toMādhava.

In the final section, we shall deal with another topic which has a bearing on
calculus, but is not dealt with inYuktibhās. ā, namely the evaluation of the in-
stantaneous velocity of a planet. Here, we shall present theresult ofDāmodara,
as cited byNı̄lakan. t.ha, on the instantaneous velocity of a planet which involves

52Tantrasaṅgraha of Nı̄lakan. t.ha Somayāj̄ı, Ed. withYukti-d̄ıpikā of Śaṅkara Vāriyar by
K. V. Sarma, Hoshiarpur 1977, p. 77. The same acknowledgement appears at the end of the subsequent
chapters also.
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the derivative of the arc-sine function. There are indeed many works and com-
mentaries by later astronomers of the Kerala School, whose mathematical contri-
butions are yet to be studied in detail. We shall here cite only one result due to
Acyuta Pis.ārat.i (c. 1550–1621), a disciple ofJyes.t.hadeva, on the instantaneous
velocity of a planet, which involves the evaluation of the derivative of the ratio of
two functions.

9. Nı̄lakan. t.ha’s discussion of irrationality of π

In the context of discussing the procedure for finding the approximate square root
of a non-square number, by multiplying it by a large square number (the method
given in Trísatikā of Śr̄ıdhara referred to earlier in Section 3.3),Nı̄lakan. t.ha

observes in his̄Aryabhat. ı̄ya-bhās. ya:53O;;vMa kx +:ta;eaY;pya;a;sa;�a;mea;va mUa;lM .~ya;a;t,a Á na :pua;naH k+.=+N�a;a;mUa;l+.~ya ta:�va;taH:pa;�a:=+.
Ce +.dH k+:t ua Za;k�+.a I+.tya;Æa;Ba;pra;a;yaH Á ta;ta;ea ya;a;va;d;pea;[a;m,a AM ;Za;a;na;Ma.sUa;[ma;tva;a;ya ma;h;ta;a va;geRa;Na h;na;na;mua;�+:m,a Á
Even if we were to proceed this way, the square root obtained will only be ap-
proximate. The idea [that is being conveyed] is, that it is actually not possible
to exactly de-limit (paricchedah. ) the square root of a non-square number. Pre-
cisely for this reason, multiplication by a large square wasstated (recommended)
in order to get as much accuracy as desired.

Regarding the choice of the large number that must be made, itis mentioned
that one may choose any number—as large a number as possible—that gives the
desired accuracy.54ta:�a ya;a;va;ta;a ma;h;ta;a gua;Na;nea bua:;dÄâ ;a;va;lM +.Ba;a;vaH .~ya;a;t,a ta;a;va;ta;a h;nya;a;t,a Áma;h:�va;~ya A;a;pea;Æa;[a;k+:tva;a;t,a ë�ÅëÁ*:+:�a;.
a;d;
a;pa na :pa;�a:=+sa;ma;a;�a;�a;�a:=+�a;ta Ba;a;vaH Á

You can multiply by whichever large number you want up to yoursatisfaction
(buddhāvalam. bhāvah. ). Since largeness is a relative notion, it may be under-
stood that the process is an unending one.

In this context,Nı̄lakan. t.ha cites the verse given bȳAryabhat.a specifying the
ratio of the circumference to the diameter of a circle (valueof π), particularly
drawing our attention to the fact thatĀryabhat.a refers to this value as “approxi-
mate”.55

53Āryabhat. ı̄ya of Āryabhat.a, Ed. with Āryabhat.ı̄ya-bhās.ya of Nı̄lakan. t.ha Somayāj̄ı by
K. Sām-baśiva Śāstr̄ı, Trivandrum Sanskrit Series 101, Trivandrum 1930, comm. onGan. itapāda

4, p. 14.
54Ibid.
55Ibid.
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a – ‘A;yua;ta;dõ ;ya;
a;va;Sk+:}Ba;~ya A;a;sa;�a;ea vxa:�a;pa;�a:=+Na;a;hH ’ I+.�a;ta Áta:�a v.ya;a;sea;na :pa;�a:=+�a;Da::℄a;a;nea A;nua;ma;a;na;pa:=+}å.pa:=+a .~ya;a;t,a Á ta;tk+:mRa;Nya;
a;pamUa;l� +.a;k+.=+Na;~ya A;nta;Ba;Ra;va;a;de ;va ta;~ya A;a;sa;�a;tva;m,a Á ta;tsa;v a ta;d;va;sa:=eO;;va :pra;�a;ta;pa;a;d;�a;ya;Sya;a;maH Á
As will be stated [by the author himself] – ‘this is [only] an approximate measure
of the circumference of the circle whose diameter is twenty-thousand.’ In finding
the circumference from the diameter, a series of inferencesare involved. The
approximate nature of this also stems from the fact that it involves finding square
roots. All this will be explained later at the appropriate context.

Addressing the issue—later in his commentary, as promised earlier—while dis-
cussing the value ofπ Nı̄lakan. t.ha observes:56:pa;�a:=+�a;Da;v.ya;a;sa;ya;eaH .sa;*ñÍËÉ ùÁ+;a;a;sa;}ba;nDaH :pra;d;
a;ZRa;taH Á . . .A;a;sa;�aH , A;a;sa;�a;ta;yEa;vaA;yua;ta-dõ ;ya;sa;*ñÍËÉ ùÁ+;a;
a;va;Sk+:}Ba;~ya I+.yMa :pa;�a:=+�a;Da;sa;*ñÍËÉ ùÁ+;a;a o+.�+:a Á ku +:taH :pua;naHva;a;~ta;v�a;Ma .sa;*ñÍËÉ ùÁ+;a;a;m,a o+.tsxa:$ya A;a;sa;�Ea;va I+.h;ea;�+:a ? o+..
ya;tea Á ta;~ya;ava;�u +:ma;Za;k�+.a;tva;a;t,a Á ku +:taH ?

The relation between the circumference and the diameter hasbeen presented.
. . . Approximate: This value (62,832) has been stated as onlyan approximation to
the circumference of a circle having a diameter of 20,000. “Why then has an ap-
proximate value been mentioned here instead of the actual value?” It is explained
[as follows]. Because it (the exact value) cannot be expressed. Why?

Explaining as to why the exact value cannot be presented,Nı̄lakan. t.ha contin-
ues:57 yea;na ma;a;nea;na m�a;a;ya;ma;a;na;ea v.ya;a;saH ;�a;na:=+va;ya;vaH .~ya;a;t,a, .tea;nEa;va m�a;a;ya;ma;a;naH:pa;�a:=+�a;DaH :pua;naH .sa;a;va;ya;va O;;va .~ya;a;t,a Á yea;na ..
a m�a;a;ya;ma;a;naH :pa;�a:=+�a;DaH;�a;na:=+va;ya;vaH .tea;nEa;va m�a;a;ya;ma;a;na;ea v.ya;a;sa;eaY;
a;pa .sa;a;va;ya;va O;;va; I+.�a;taO;;ke +:nEa;va ma;a;nea;na m�a;a;ya;ma;a;na;ya;eaH o+.Ba;ya;eaH ë�ÅëÁ*:+:a;
a;pa na ;�a;na:=+va;ya;va;tvMa.~ya;a;t,a Á ma;h;a;nta;m,a A;Dva;a;nMa ga;tva;a;
a;pa A;�pa;a;va;ya;va;tva;m,a O;;va l+.Bya;m,a Á;�a;na:=+va;ya;va;tvMa tua ë�ÅëÁ*:+:a;
a;pa na l+.Bya;m,a I+.�a;ta Ba;a;vaH Á

Given a certain unit of measurement (māna) in terms of which the diameter
(vyāsa) specified [is just an integer and] has no [fractional] part (niravayava),
the same measure when employed to specify the circumference(paridhi) will
certainly have a [fractional] part (sāvayava) [and cannot be just an integer].
Again if in terms of certain [other] measure the circumference has no [fractional]
part, then employing the same measure the diameter will certainly have a [frac-
tional] part [and cannot be an integer]. Thus when both [the diameter and the
circumference] are measured by the same unit, they cannot both be specified [as

56Ibid., comm. onGan. itapāda 10, p. 41.
57Ibid., pp. 41–42.
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integers] without [fractional] parts. Even if you go a long way (i.e., keep on re-
ducing the measure of the unit employed), the fractional part [in specifying one
of them] will only become very small. A situation in which there will be no [frac-
tional] part (i.e, both the diameter and circumference can be specified in terms of
integers) is impossible, and this is the import [of the expressionāsanna].

Evidently, whatNı̄lakan.t.ha is trying to explain here is the incommensurability
of the circumference and the diameter of a circle. Particularly, the last line of
the above quote—whereNı̄lakan. t.ha clearly mentions that, however small you
may choose your unit of measurement to be, the two quantitieswill never become
commensurate—is noteworthy.

10. Nı̄lakan. t.ha’s discussion of the sum of an infinite geometric series

In his Āryabhat. ı̄ya-bhās. ya, while deriving an interesting approximation for the
arc of a circle in terms of thejyā (Rsine) and thésara (Rversine),Nı̄lakan. t.ha

presents a detailed demonstration of how to sum an infinite geometric series. The
specific geometric series that arises in this context is:

1

4
+
(

1

4

)2

+ . . . +
(

1

4

)n

+ . . . = 1

3
.

We shall now present an outline ofNı̄lakan.t.ha’s argument that gives an idea
of how the notion of limit was understood in the Indian mathematical tradition.

10.1. Nı̄lakan. t.ha’s approximate formula for the arc in terms of jyā and śara

In Figure 7,AB is the arc whose length (assumed to be small) is to be determined
in terms of the chord lengthsAD andB D. In the Indian mathematical literature,
the arcAB, the semi-chordAD and the segmentB D are referred to as thecāpa,
jyārdha andśara respectively. As can be easily seen from the figure, this termi-
nology arises from the fact that these geometrical objects look like a bow, a string
and an arrow respectively. Denoting them byc, j , ands, the expression for the arc
given byNı̄lakan. t.ha may be written as:

c ≈
√

(

1 + 1

3

)

s2 + j 2. (74)
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FIGURE 7. Arc-length in terms ofjyā andśara.

Nı̄lakan. t.ha’s proof of the above equation has been discussed in detail bySaras-
vati Amma.58 It may also be mentioned that the above approximation actually
does not form a part of the text̄Aryabhat. ı̄ya; but nevertheless it is introduced by
Nı̄lakan. t.ha while commenting upon a verse in̄Aryabhat. ı̄ya that gives the arc
in terms of the chords in a circle.59 The verse that succinctly presents the above
equation (74) goes as follows:60.sa:�yMa;Za;a;
a;d;Sua;va;ga;Ra;t,a .$ya;a;va;ga;Ra;Q.�a;a;t,a :pa;dM ;Da;nuaH :pra;a;yaH Á

The arc is nearly (prāyah. ) equal to the square root of the sum of the square of
the śara added to one-thirds of it, and the square of thejyā.

The proof of (74) given byNı̄lakan. t.ha involves:

(1) Repeated halving of the arc-bit,cāpa c to getc1 . . . ci . . . .

(2) Finding the corresponding semi-chords,jyā ( j i ) and the Rversines,
śara (si ).

(3) Estimating the difference between thecāpa andjyā at each step.

If δi denotes the difference between thecāpa andjyā at thei th step, that is,

δi = ci − j i ,

58T. A. Sarasvati Amma, cited above (fn. 21), pp. 179–182.
59vxa:�ea Za:=+sMa;va;gRaH A;DRa:$ya;a;va;gRaH .sa Ka;lu ;Da;nua;Sa;eaH Á (Āryabhat.ı̄ya, Gan. itapāda, verse 17).
60Āryabhat.ı̄ya-bhās.ya on Āryabhat.ı̄ya, cited above (fn. 50), comm. onGan. itapāda 12 and

17, p. 63 and p. 110. That the verse cited is from another work of his, namelyGolasāra, has been
alluded to byNı̄lakan. t.ha in both the instances of citation.
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then it is seen that this difference decreases as the size of the cāpa decreases.
Having made this observation,Nı̄lakan. t.ha proceeds with the argument that

• Generating successive values of thej i -s andsi -s is an ‘unending’ process
(na kvacidapi paryavasyati) as one can keep on dividing thecāpa into half
ad infinitum(ānantyāt vibhāgasya).

• It would therefore be appropriate to proceed up to a stage where the differ-
enceδi becomes negligible (śūnyaprāya) and make an ‘intelligent approxi-
mation’, to obtain the value of the difference betweenc and j approximately.

The original passage in̄Aryabhat. ı̄ya-bhās. ya which presents the above argument
reads as follows:61ta:�a .$ya;a;.
a;a;pa;ya;ea:=+nta:=+~ya :pua;naH :pua;naH nyUa;na;tvMa ..
a;a;pa;pa;�a:=+ma;a;Na;a;�pa;tva-kÒ +:mea;Nea;�a;ta ta:�a;d;DRa;.
a;a;pa;a;na;a;m,a A;DRa:$ya;a;pa:=+}å.pa:=+a Za:=+pa:=+}å.pa:=+a ..
aA;a;n�a;a;ya;ma;a;na;a na ë�ÅëÁ*:+:�a;.
a;d;
a;pa :pa;yRa;va;~ya;�a;ta A;a;na;ntya;a;d, ;
a;va;Ba;a;ga;~ya Áta;taH ;
a;k+:ya;nta;�a:úãÁ*.a;t,a :pra;de ;ZMa ga;tva;a ..
a;a;pa;~ya .j�a;a;va;a;ya;a;(ãÉaA;�p�a;a;ya;~tva;m,a A;a;pa;a;dùÅ;a ..
a;a;pa:$ya;a;nta:=M ..
a ZUa;nya;pra;a;yMa l+.b.Dva;a :pua;na:=+
a;pak+:�pya;ma;a;na;ma;nta:=+m,a A;tya;�pa;ma;
a;pa k+:Ea;Za;l+.a;t,a :℄ea;ya;m,a Á
10.2. Nı̄lakan. t.ha’s summation of the infinite geometric series

The question thatNı̄lakan. t.ha poses as he commences his detailed discussion on
the sum of geometric series is very important and arises quite naturally whenever
one encounters the sum of an infinite series:62k+:TMa :pua;naH ta;a;va;de ;va va;DRa;tea ta;a;va;dõ ;DRa;tea ..
a ?

How do you know that [the sum of the series] increases only up to that [limiting
value] and that it certainly increases up to that [limiting value]?

Proceeding to answer the above question,Nı̄lakan.t.ha first states the general
result

a

[
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1
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)2

+
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1
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+ . . .

]

= a

r − 1
.

Here, the left hand side is an infinite geometric series with the successive terms
being obtained by dividing by a common divisor,r , known ascheda, whose value

61Ibid., comm. onGan. itapāda 17, pp. 104–05.
62Ibid., p. 106.
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is assumed to be greater than 1. He further notes that this result is best demon-
strated by considering a particular case, sayr = 4. In his own words:63o+..
ya;tea Á O;;vMa yaH tua;�ya;.
Ce +.d;pa:=+Ba;a;ga;pa:=+}å.pa:=+a;ya;aH A;na;nta;a;ya;aH A;
a;pa.sMa;ya;ea;gaH ta;~ya A;na;nta;a;na;a;ma;
a;pa k+:�pya;ma;a;na;~ya ya;ea;ga;~ya A;a;dùÅ;a;a;va;ya;
a;va;naH:pa:=+}å.pa:=+Ma;Za;.
Ce +.d;a;t,a O;;k+:ea;na;.
Ce +.d;Ma;Za;sa;a;}yMa .sa;vRa:�a .sa;ma;a;na;mea;va Á ta;dùÅ;a;Ta;a

– ..
a;tua:=M +Za;pa:=+}å.pa:=+a;ya;a;mea;va ta;a;va;t,a :pra;Ta;mMa :pra;�a;ta;pa;a;dùÅ;a;tea Á
It is being explained. Thus, in an infinite (ananta) geometrical series (tulya-
ccheda-parabhāga-paramparā) the sum of all the infinite number of terms con-
sidered will always be equal to the value obtained by dividing by a factor which is
one less than the common factor of the series. That this is so will be demonstrated
by first considering the series obtained with one-fourth (caturam. śa-paramparā).

What is intended to be demonstrated is

a

[
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1
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+
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+ . . .

]

= a

3
. (75)

Besides the multiplying factora, it is noted that, one-fourth and one-third are
the only terms appearing in the above equation.Nı̄lakan. t.ha first defines these
numbers in terms of one-twelfth of the multipliera referred to by the wordrāśi.
For the sake of simplicity we take therāśi to be unity.

3 × 1

12
= 1

4
; 4 × 1

12
= 1

3
.

Having defined them,Nı̄lakan. t.ha first obtains the sequence of results,

1

3
= 1

4
+ 1

(4.3)
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,

and so on, which leads to the general result,
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63Ibid., pp. 106–07.
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Nı̄lakan.t.ha then goes on to present the following crucial argument to derive the
sum of the infinite geometric series: As we sum more terms, thedifference be-
tween1

3 and sum of powers of14 (as given by the right hand side of (76)), becomes
extremely small, but never zero. Only when we take all the terms of the infinite
series together do we obtain the equality

1
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+
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)2

+ . . . +
(

1

4

)n

+ . . . = 1

3
. (77)

A brief extract from the text presenting the above argument is given below:64yea .=+a;Zea;dõ ;Ra;d;Za;Ma;Za;aH .tea;Sa;Ma ;
a:�a;kM ;
a;h ..
a;tua:=M +ZaH Á ..
a;tua;SkM ..
a �yMa;ZaH Áta;�a;tua;�;yea �yMa;Za;a;tma;ke Ba;a;ga:�a;yMa ..
a;tua:=M +Zea;na;a;pUa;NRa;m,a Á yaH :pua;naH ta;~ya..
a;tua;Ta;eRaY;}å.ZaH ta;~ya;a;
a;pa :pa;a;d:�a;yMa ..
a;tua:=M +Za;~ya ..
a;tua:=M +Zea;na;a;pUa;NRa;m,a Ádõ ;a;d;Za;Ma;Za;a;na;Ma �a;ya;a;Na;Ma . . .ta;~ya :pua;naH :pua;na:=+�a;ta;sUa;[ma;tva;a;de ;va na :ke +:va;lM �yMa;Za;tvea;na A;ñÍç ÅÅ*:� +.a;k+:a:=H ,;�a;na:�+.pya;ma;a;Na;~ya va;a ;
a;kÒ +:ya;ma;a;Na;~ya va;a A;a;na;ntya;a;t,a Á A;a;na;ntya;a;de ;va;
a;Za;�;tva;a;de ;va k+:mRa;Na;~ta;~ya A;pa;�a:=+pUa;�a;tRa;Ba;Ra;�a;ta Á O;;vMa .sa;vRa;d;a;
a;pa.sa;a;va;Zea;Sa;a;Na;Ma k+:mRa;Na;Ma :pa:=+}å.pa:=+a;ya;Ma k+:a;t=+:ïîåéyeRa;na;a;kx +:Sya;a:�a .sa;
a;�a;
a;h;ta;a;ya;Ma:pa;�a:=+pUa;�a;tRaH .~ya;a;de ;vea;�a;ta ;�a;na;(ãÉ�a;a;ya;tea ..
a;tua;gRua;Na;ea:�a:=e gua;Na;ea:�a:=+a;K.yea ga;
a;Na;teaY;
a;pa Á
Three times one-twelfth of arāśi is one-fourth (caturam. śa) [of that rāśi]. Four
times that is one-third (tryam. śa). [Considering] four times that [one-twelfth of
the rāśi] which is one-third, three by fourth of that falls short by one-fourth [of
one-third of therāśi]. Three-fourths of that [i.e., of1

4.3 of the rāśi] which is
one-fourth of that (tryam. śa), again falls short [of the same] by one-fourth of
one-fourth [of one-third of therāśi] . . .

Since the result to be demonstrated or the process to be carried out is never
ending (̄anantyāt) and the difference though very small (atisūks.matvāt) [still
exists and the sum of the series] cannot be simply taken to be one-third. It seems
that the process is incomplete since always something remains because of its never
ending nature. In fact, since in all the problems involving [infinite] series, by
bringing in all the terms and placing them together, the process would [in princi-
ple] become complete, here, in the mathematics involving repeated multiplication
of one-fourth, a similar conclusion may be drawn.

64Ibid., p. 107.
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11. Derivation of binomial series expansion

Yuktibhās. ā presents a very interesting derivation of the binomial series for(1 +
x)−1 by making iterative substitutions in an algebraic identity. The method given
in the text may be summarized as follows.65

Consider the producta
( c

b

)

, where some quantitya is multiplied by the multi-
plier c, and divided by the divisorb. Here,a is calledgun. ya, c thegun. aka and
b thehāra, which are all assumed to be positive. Now the above product can be
rewritten as:

a
( c

b

)

= a − a
(b − c)

b
. (78)

In the expressiona (b−c)
b in (78) above, if we want to replace the division byb

(the divisor) by division byc (the multiplier), then we have to make a subtractive
correction (called́sodhya-phala) which amounts to the following equation.

a
(b − c)

b
= a

(b − c)

c
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c
× (b − c)

b

)

. (79)

Now, in the second term (inside parenthesis) in (79)—which is what we referred
to aśsodhya-phala, which literally means a quantity to be subtracted—if we again
replace the division byb by division byc, then we have to employ the relation (79)
once again to get another subtractive term
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b
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. (80)

Here, the quantitya (b−c)2

c2 is calleddvit̄ıya-phala or simply dvit̄ıya and the
one subtracted from that isdvit̄ıya-śodhya-phala. If we carry out the same set of
operations, themth śodhya-phala subtracted from themth term will be of the form

a
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− a
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c

]m

× (b − c)

b
.

65Gan. ita-yukti-bhās.ā, cited above, Vol. I, Sections 6.3.3–4, pp. 54–58, 188–191,375–378.



246 K. Ramasubramanian and M. D. Srinivas

Since the successivésodhya-phalas are subtracted from their immediately pre-
ceding term, we will end up with a series in which all the odd terms (leaving
out thegun. ya, a) are negative and the even ones positive. Thus, after takingm
śodhya-phalas we get

a
c

b
= a − a

(b − c)

c
+ a

[

(b − c)

c

]2

− . . . + (−1)ma

[

(b − c)

c

]m

+(−1)m+1a

[

(b − c)

c

]m (b − c)

b
. (81)

Regarding the question of termination of the process, both the textsYuktibhās. ā
andKriyākramakar̄ı clearly mention that logically there is no end to the process
of generatinǵsodhya-phalas. We may thus write our result as:66

a
c

b
= a − a

(b − c)

c
+ a

[

(b − c)

c

]2

− . . . + (−1)m−1a

[

(b − c)

c

]m−1

+(−1)ma

[

(b − c)

c

]m

+ . . . . (82)

It is also noted that the process may be terminated after having obtained the
desired accuracy by neglecting the subsequentphalās as their magnitudes become
smaller and smaller. In fact,Kriyākramakar̄ı explicitly mentions the condition
under which the succeedingphalas will become smaller and smaller:67O;;vMa mua;hu H :P+.l+.a;na;ya;nea kx +:teaY;
a;pa yua;�a;�+:taH ë�ÅëÁ*:+:a;
a;pa na .sa;ma;a;�a;�aH Á ta;Ta;a;
a;paya;a;va;d;pea;[Ma .sUa;[ma;ta;a;ma;a;pa;a;dùÅ;a :pa;a;(ãÉa;a;tya;a;nyua;pea;[ya :P+.l+.a;na;ya;nMa .sa;ma;a;pa-n�a;a;ya;m,a Á I+.h;ea:�a:=+ea:�a:=+P+.l+.a;na;Ma nyUa;na;tvMa tua gua;Na;h;a:=+a;nta:=e gua;Na;k+:a:=+a;�yUa;naO;;va .~ya;a;t,a Á

Thus, even if we keep finding thephalas repeatedly, logically there is no end
to the process. Even then, having carried on the process to the desired accu-
racy (yāvadapeks.am. sūks.matāmāpādya), one should terminate computing
thephalas by [simply] neglecting the terms that may be obtained further (pāścā-
tyānyupeks.ya). Here, the succeedingphalas will become smaller and smaller
only when the difference between thegun. aka andhāra is smaller thangun. aka
[that is(b ∼ c) < c].

66It may be noted that if we set(b−c)
c = x, then c

b = 1
(1+x)

. Hence, the series (82) is none other
than the well known binomial series

a

1+ x
= a − ax + ax2 − . . . + (−1)maxm + . . . ,

which is convergent for−1 < x < 1.
67Kriyākramakar̄ı onLı̄lāvat̄ı, cited above (fn. 14), comm. on verse 199, p. 385.
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12. Estimation of sums of1k + 2k + . . . nk for large n

As mentioned in section 4.1,̄Aryabhat.a has given the explicit formulae for the
summation of squares and cubes of integers. The word employed in the In-
dian mathematical literature for summation issaṅkalita. The formulae given by
Āryabhat.a for thesaṅkalitas are as follows:

S(1)
n = 1 + 2 + · · · + n = n(n + 1)

2

S(2)
n = 12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6

S(3)
n = 13 + 23 + · · · + n3 =

[

n(n + 1)

2

]2

. (83)

From these, it is easy to estimate these sums whenn is large.Yuktibhās. ā gives a
general method of estimating thesama-ghāta-saṅkalita

S(k)
n = 1k + 2k + · · · + nk, (84)

whenn is large. The text presents a general method of estimation, which does not
make use of the actual value of the sum. In fact, the same argument is repeated
even fork = 1, 2, 3, although the result of summation is well known in these
cases.

12.1. The sum of natural numbers (Mūla-saṅkalita)

Yuktibhās. ā takes up the discussion onsaṅkalitas in the context of evaluating the
circumference of a circle which is conceived to be inscribedin a square. It is
half the side of this square that is being referred to by the word bhujā in both
the citations as well as explanations offered below. Half ofthe side of the square
(equal to the radius) is divided inton equal bits, known asbhujā-khan. d. as. It is
thesebhujā-khan. d. as

( r
n

)

, 2
( r

n

)

· · · whose powers are summed.
To start with,Yuktibhās. ā discusses just the basic summation ofbhujā-khan. d. as

calledMūla-saṅkalita. We now cite the following from the translation ofYuk-
tibhās. ā:68

Now is described the methods of making the summations (referred to in the ear-
lier sections). At first, the simple arithmetical progression (kevala-saṅkalita) is
described. This is followed by the summation of the productsof equal numbers
(squares). . . .
Here, in thismūla-saṅkalita (basic arithmetical progression), the finalbhujā is

68Gan. ita-yukti-bhās.ā, cited above, Section 6.4, pp. 61–67, 192–97, 382–88.
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equal to the radius. The term before that will be one segment (khan. d. a) less. The
next one will be two segments less. Here, if all the terms (bhujās) had been equal
to the radius, the result of the summation would be obtained by multiplying the
radius by the number ofbhujās. However, here, only onebhujā is equal to the
radius. And, from thatbhujā, those associated with the smaller hypotenuses are
less by one segment each, in order. Now, suppose the radius tobe of the same
number of units as the number of segments to which it has been divided, in order
to facilitate remembering (their number). Then, the numberassociated with the
penultimatebhujā will be less by one (from the number of units in the radius);
the number of the next one, will be less by two from the number of units in the
radius. This reduction (in the number of segments) will increase by one (at each
step). The last reduction will practically be equal to the measure of the radius, for
it will be less only by one segment. In other words, when the reductions are all
added, the sum thereof will practically (prāyen. a) be equal to the summation of
the series from 1 to the number of units in the radius; it will be less only by one
radius length. Hence, the summation will be equal to the product of the number
of units in the radius with the number of segments plus one, and divided by 2.
The summation of all thebhujās of the different hypotenuses is calledbhujā-
saṅkalita.
Now, the smaller the segments, the more accurate (sūks.ma) will be the result.
Hence, do the summation also by taking each segment as small as an atom (an. u).
Here, if it (namely, thebhujā or the radius) is divided intoparārdha (a very
large number) parts, to thebhujā obtained by multiplying byparārdha add one
part inparārdha and multiply by the radius and divide by 2, and then divide by
parārdha. For, the result will practically be the square of the radiusdivided by
two. . . .

The first summation, thebhujā-saṅkalita, may be written in the reverse order
from the finalbhujā to the firstbhujā as

S(1)
n =

(nr

n

)

+
(

(n − 1)r

n

)

+ .... +
( r

n

)

. (85)

Now, conceive of thebhujā-khan. d. a
r
n as being infinitesimal (an. u) and at the same

time as of unit-measure (rūpa), so that the radius will be the measure ofn, the
pada, or the number of terms. Then

S(1)
n = n + (n − 1) + .... + 1. (86)

If each of the terms were of the measure of radius(n) then the sum would be
nothing butn2, the square of the radius. But only the first term is of the measure
of radius, the next is deficient by one segment (khan. d. a), the next by two segments
and so on till the last term which is deficient by an amount equal to radius-minus-
one segment. In other words,

S(1)
n = n + [n − 1] + [n − 2].... + [n − (n − 2)] + [n − (n − 1)]

= n.n − [1 + 2 + ... + (n − 1)]. (87)
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Whenn is very large, the quantity to be subtracted fromn2 is practically (prāyen. a)
the same asS(1)

n , thus leading to the estimate

S(1)
n ≈ n2 − S(1)

n , (88)

or S(1)
n ≈ n2

2
. (89)

It is stated that the result is more accurate, when the size ofthe segments are small
(or equivalently, the value ofn is large).69

If instead of making the approximation as in (88), we proceedwith (87) as it is,
we getS(1)

n = n2 − (S(1)
n − n), which leads to the well-known exact value of the

sum of the firstn natural numbers

S(1)
n = n(n + 1)

2
, (90)

With the convention that thern is of unit-measure, the above estimate (89) is stated
in the form that thebhujā-saṅkalita is half the square of the radius.

12.2. Summation of squares (Varga-saṅkalita)

We now cite the following from the translation ofYuktibhās. ā:70

Now is explained the summation of squares (varga-saṅkalita). Obviously, the
squares of thebhujās, which are summed up above, are thebhujās each multi-
plied by itself. Here, if thebhujās which are all multipliers, had all been equal to
the radius, their sum, (saṅkalita derived above), multiplied by the radius would
have been the summation of their squares. Here, however, only one multiplier
happens to be equal to the radius, and that is the last one. Theone before that will
have the number of segments one less than in the radius. (Hence) if that, (i.e., the
second one), is multiplied by the radius, it would mean that one multiplied by the
penultimatebhujā would have been the increase in the summation of the squares.
Then (the segment) next below is the third. That will be less than the radius by
two segments. If that is multiplied by the radius, it will mean that, the summa-
tion of the squares will increase by the product of thebhujā by two (segments).
In this manner, the summation in which the multiplication isdone by the radius
(instead of thebhujās) would be larger than the summation of squares by terms

69́Saṅkara Vāriyar also emphasizes the same idea, in his discussion of the estimation of
saṅkalitas in his commentaryKriyākramakar̄ı on Lı̄lāvat̄ı (cited above (fn. 14), comm. on verse
199, p. 382.):Ka;Nq+.~ya;a;�pa;tvea .sa;tyea;va l+.b.Da;~ya .sUa;[ma;ta;a ..
a .~ya;a;t,a Á

Only when the segment is small (khan. d. asyālpatve) the result obtained would be
accurate.

70Gan. ita-yukti-bhās.ā, cited above, Section 6.4, pp. 61–67, 192–97, 382–88.
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which involve the successively smallerbhujās multiplied by successively higher
numbers. If (all these additions) are duly subtracted from the summation where
the radius is used as the multiplier, the summation of squares (varga-saṅkalita)
will result.
Now, thebhujā next to the east-west line is less than the radius by one (segment).
So if all the excesses are summed up and added, it would be the summation of the
basic summation (mūla-saṅkalita-saṅkalita). Because, the sums of the sum-
mations is verily the ‘summation of summations’ (saṅkalita-saṅkalita). There,
the last sum has (the summation of) all thebhujās. The penultimate sum is next
lower summation to the last. This penultimate sum is the summation of all the
bhujās except the lastbhujā. Next to it is the third sum which is the sum of all
thebhujās except the last two. Thus, each sum of thebhujās commencing from
anybhujā which is taken to be the last one in the series, will be less by onebhujā

from the sum (of thebhujās) before that.
Thus, the longestbhujā is included only in one sum. But thebhujā next lower

than the last (bhujā) is included both in the last sum and also in the next lower
sum. Thebhujās below that are included in the three, four etc. sums below it.
Hence, it would result that the successively smallerbhujās commencing from the
one next to the last, which have been multiplied by numbers commencing from 1
and added together, would be summation of summations (saṅkalita-saṅkalita).
Now, it has been stated earlier that the summation (saṅkalita) of (the segments
constituting) abhujā which has been very minutely divided, will be equal to
half the square of the lastbhujā. Hence, it follows that, in order to obtain the
summation (saṅkalita) of the bhujās ending in any particularbhujā, we will
have to square each of thebhujās and halve it. Thus, the summation of summa-
tions (saṅkalita-saṅkalita) would be half the summation of the squares of all the
bhujās. In other words, half the summation of the squares is the summation of the
basic summation. So, when the summation is multiplied by theradius, it would
be one and a half times the summation of the squares. This factcan be expressed
by stating that this contains half more of the summation of squares. Therefore,
when the square of the radius divided by two is multiplied by the radius and one-
third of it subtracted from it, the remainder will be one-third of the whole. Thus it
follows that one-third of the cube of the radius will be the summation of squares
(varga-saṅkalita).

With the same convention thatr
n is the measure of the unit, thebhujā-varga-

saṅkalita (the sum of the squares of thebhujās) will be

S(2)
n = n2 + (n − 1)2 + .... + 12. (91)

In above expression, eachbhujā is multiplied by itself. If instead, we consider that
eachbhujā is multiplied by the radius (n in our units), then that would give raise
to the sum

n [n + (n − 1) + ... + 1] = n S(1)
n . (92)

This sum is exceeds thebhujā-varga-saṅkalita by the amount

nS(1)
n − S(2)

n = 1.(n − 1) + 2.(n − 2) + 3.(n − 3) + . . . + (n − 1).1.
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This may be written in the form

nS(1)
n − S(2)

n = (n − 1) + (n − 2) + (n − 3) + . . . +1

+(n − 2) + (n − 3) + . . . +1

+(n − 3) + . . . +1

+ . . . . (93)

Thus,

nS(1)
n − S(2)

n = S(1)
n−1 + S(1)

n−2 + S(1)
n−3 + . . . . (94)

The right hand side of (94) is called thesaṅkalita-saṅkalita (or saṅkalitaikya),
the repeated sum of the sumsS(1)

i (here taken in the orderi = n−1, n−2, . . .1).
These are defined also byŚaṅkara Vāriyar in Kriyākramakar̄ı as follows:71ta;Ta;a ;
a;h .sa;ñÍö�ÅÅ*:+.�a;l+.ta;a;na;Ma ya;ea;ga;ea ;
a;h .sa;ñÍö�ÅÅ*:+.�a;l+.ta;sa;ñÍö�ÅÅ*:+.�a;l+.ta;mua;.
ya;tea Á ta:�aA;ntya;sa;ñÍö�ÅÅ*:+.�a;l+.tMa .sa;va;Ra;sa;Ma Bua:ja;a;na;Ma ya;ea;gaH Á o+.pa;a;ntya;sa;ñÍö�ÅÅ*:+.�a;l+.tMa tuaA;ntya;Bua:ja;a;v.ya;�a;ta;�a:=+�+:a;na;a;Æa;ma;ta:=e +Sa;Ma ya;ea;gaH Á o+.pa;a;ntya;a;t,a :pUa;vRa;~ya.sa;ñÍö�ÅÅ*:+.�a;l+.tMa :pua;na;~ta;d;va;�a;Da;k+:a;na;a;mea;va Bua:ja;a;na;Ma ya;ea;gaH Á O;;vMa :pUa;vRa-.sa;ñÍö�ÅÅ*:+.�a;l+.ta;a;�a;na .~va;ea:�a:=+a;t,a .sa;ñÍö�ÅÅ*:+.�a;l+.ta;a;t,a O;;kE +:ke +:na Bua:jea;na ;
a;va:=+
a;h;ta;a;�a;naBa;va;�////�a;nta Á

The sum of the summations is called assaṅkalita-saṅkalita. Of them the last
saṅkalita is the sum all thebhujās. The penultimatesaṅkalita is the sum of
all the bhujās other than the last one. Thesaṅkalita of the one preceding the
penultimate is the sum of thebhujās ending with that. Thus, all the preceding
saṅkalitas will fall short by abhujā from the succeedingsaṅkalita.

For largen, we have already estimated in (89) thatS(1)
n ≈ n2

2 . Thus, for largen

nS(1)
n − S(2)

n ≈ (n − 1)2

2
+ (n − 2)2

2
+ (n − 3)2

2
+ . . . . (95)

Thus, the right hand side of (94) (thesaṅkalita-saṅkalita or the excess ofnS(1)
n

overS(2)
n ) is essentiallyS(2)

n
2 for largen, so that we obtain

nS(1)
n − S(2)

n ≈ S(2)
n

2
. (96)

71Kriyākramakar̄ı onLı̄lāvat̄ı, cited above (fn. 14), comm. on verse 199, pp. 382–83.
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Again, using the earlier estimate (89) forS(1)
n , we obtain the result

S(2)
n ≈ n3

3
. (97)

Thusbhujā-varga-saṅkalita is one-third the cube of the radius.

12.3. Sama-ghāta-saṅkalita

We now cite the following from the translation ofYuktibhās. ā:72

Now, the square of the square (of a number) is multiplied by itself, it is called
sama-pañca-ghāta (number multiplied by itself five times). The successive
higher order summations are calledsama-pañcādi-ghāta-saṅkalita (and will
be the summations of powers of five and above). Among them if the summation
(saṅkalita) of powers of some order is multiplied by the radius, then theproduct
is the summation of summations (saṅkalita-saṅkalita) of the (powers of
the) multiplicand (of the given order), together with the summation of powers
(sama-ghāta-saṅkalita) of the next order. Hence, to derive the summation of
the successive higher powers: Multiply each summation by the radius. Divide it
by the next higher number and subtract the result from the summation got before.
The result will be the required summation to the higher order.

Thus, divide by two the square of the radius. If it is the cube of the radius, divide
by three. If it is the radius raised to the power of four, divide by four. If it is
(the radius) raised to the power of five, divide by five. In thismanner, for powers
rising one by one, divide by numbers increasing one by one. The results will be,
in order, the summations of powers of numbers (sama-ghāta-saṅkalita). Here,
the basic summation is obtained from the square, the summation of squares from
the cube, the summation of cubes from the square of the square. In this manner,
if the numbers are multiplied by themselves a certain numberof times (i.e., raised
to a certain degree) and divided by the same number, that willbe the summation
of the order one below that. Thus (has been stated) the methodof deriving the
summations of (natural) numbers, (their) squares etc.

In the case of a generalsamaghāta-saṅkalita, (summation of equal powers) given
by

S(k)
n = nk + (n − 1)k + . . . + 1k, (98)

the procedure followed to estimate its behavior for largen is essentially the same
as that followed in the case ofvargasaṅkalita. We first compute the excess of
nS(k−1)

n over S(k)
n to be asaṅkalita-saṅkalita or repeated sum of the lower order

72Gan. ita-yukti-bhās.ā, cited above, Section 6.4, pp. 61–67, 192–97, 382–88.
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saṅkalitas S(k−1)
r :

nS(k−1)
n − S(k)

n = S(k−1)
n−1 + S(k−1)

n−2 + S(k−1)
n−3 + . . . . (99)

If the lower ordersaṅkalita S(k−1)
n has already been estimated to be, say,

S(k−1)
n ≈ nk

k
, (100)

then, the above relation (99) leads to73

nS(k−1)
n − S(k)

n ≈ (n − 1)k

k
+ (n − 2)k

k
+ (n − 3)k

k
+ . . .

≈
(

1

k

)

S(k)
n . (101)

Rewriting the above equation we have74

S(k)
n ≈ nS(k−1)

n −
(

1

k

)

S(k)
n . (102)

Using (100), we obtain the estimate

S(k)
n ≈ nk+1

(k + 1)
. (103)

73As one of the reviewers has pointed out, this argument leading to (101) is indeed similar to the
derivation of the following relation, which is based on the interchange of order in iterated integrals:

∫ 1

0
(1 − x)xk−1dx =

∫ 1

0
xk−1

∫ 1

x
dy dx=

∫ 1

0
y
∫ y

0
xk−1dx dy=

∫ 1

0

yk

k
dy.

74As Śaṅkara Vāriyar states in hisKriyākramakar̄ı onLı̄lāvat̄ı (cited above (fn. 14), p. 383):A;ta o+�a:=+ea:�a:=+sa;ñÍö�ÅÅ*:+.�a;l+.ta;a;na;ya;na;a;ya ta:�a;tsa;ñÍö�ÅÅ*:+.�a;l+.ta;~ya v.ya;a;sa;a;DRa;gua;Na;na;m,aO;;kE +:k+:a;�a;Da;k+:sa;*ñÍËÉ ùÁ+;a;a;�a;~va;Ma;Za;Za;ea;Da;nMa ..
a k+:a;yRa;m,a I+.�a;ta ;�//////�a;~Ta;ta;m,a Á
Therefore it is established that, for obtaining the sum of the next order, the previ-
ous sum, has to be multiplied by the radius and the present sum, divided by one
more than the previous [order], has to be diminished [from that product].
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12.4. Repeated summations (Saṅkalita-saṅkalita)

After having estimated the sum of powers of natural numberssamaghāta-saṅkalita
Yuktibhās. ā goes on to derive an estimate for the repeated summation (saṅkalita-
saṅkalita or saṅkalitaikya or vārasaṅkalita) of the natural number 1, 2, · · · , n.75

Now, are explained the first, second and further summations:The first summa-
tion (̄adya-saṅkalita) is the basic summation (mūla-saṅkalita) itself. It has
already been stated (that this is) half the product of the square of the number of
terms (pada-vargārdha). The second (dvit̄ıya-saṅkalita) is the summation of
the basic summation (mūla-saṅkalitaikya). It has been stated earlier that it is
equal to half the summation of squares. And that will be one-sixth of the cube of
the number of terms.
Now, the third summation: For this, take the second summation as the last term
(antya); subtract one from the number of terms, and calculate the summation
of summations as before. Treat this as the penultimate. Thensubtract two from
the number of terms and calculate the summation of summations. That will be the
next lower term. In order to calculate the summation of summations of numbers in
the descending order, the sums of one-sixths of the cubes of numbers in descend-
ing order would have to be calculated. That will be the summation of one-sixth
of the cubes. And that will be one-sixth of the summation of cubes. As has been
enunciated earlier, the summation of cubes is one-fourth the square of the square.
Hence, one-sixth of one-fourth the square of the square willbe the summation
of one-sixth of the cubes. Hence, one-twenty-fourth of the square of the square
will be the summation of one-sixth of the cubes. Then, the fourth summation will
be, according to the above principle, the summation of one-twenty-fourths of the
square of squares. This will also be equal to one-twenty-fourth of one-fifth of
the fifth power. Hence, when the number of terms has been multiplied by itself
a certain number of times, (i.e., raised to a certain degree), and divided by the
product of one, two, three etc. up to that index number, the result will be the
summation up to that index number amongst the first, second etc. summations
(ādya-dvit̄ıyādi-saṅkalita).

The first summation (̄adya-saṅkalita) V (1)
n is just themūla-saṅkalita or the

basic summation of natural numbers, which has already been estimated in (89)

V (1)
n = S(1)

n = n + (n − 1) + (n − 2) + . . . + 1

≈ n2

2
. (104)

The second summation (dvit̄ıya-saṅkalita or saṅkalita-saṅkalita or saṅkalitaikya)
is given by

V (2)
n = V (1)

n + V (1)
n−1 + V (1)

n−2 + . . .

= S(1)
n + S(1)

n−1 + S(1)
n−2 + . . . . (105)

75Gan. ita-yukti-bhās.ā, cited above, Section 6.4, pp. 61–67, 192–97, 382–88.
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As was done earlier, this second summation can be estimated using the estimate
(89) for S(1)

n

V (2)
n ≈ n2

2
+ (n − 1)2

2
+ (n − 2)2

2
+ . . . . (106)

Therefore

V (2)
n ≈

(

1

2

)

S(2)
n . (107)

Using the earlier estimate (97) forS(2)
n , we get an estimate for thedvit̄ıya-saṅkalita

V (2)
n ≈ n3

6
. (108)

Now the next repeated summation can be found in the same way

V (3)
n = V (2)

n + V (2)
n−1 + V (2)

n−2 + . . .

≈ n3

6
+ (n − 1)3

6
+ (n − 2)3

6
+ . . .

≈
(

1

6

)

S(3)
n

≈ n4

24
. (109)

It is noted that proceeding this way we can estimate repeatedsummationV (k)
n of

orderk, for largen, to be76

V (k)
n = V (k−1)

n + V (k−1)
n−1 + V (k−1)

n−2 + . . .

≈ nk+1

1.2.3. . . . (k + 1)
. (110)

76These are again estimates for largen. As mentioned in Section 4, exact expressions for the first

two summations,V(1)
n andV (2)

n , are given inĀryabhat.ı̄ya, Gan. itapāda 21; and the exact expression

for the k-th order repeated summationV (k)
n has been given (under the namevāra-saṅkalita), by

Nārāyan. a Pan.d. ita (c. 1350) in hisGan. itakaumud̄ı, 3.19. This exact expression forV(k)
n is also

noted in Section 7.5.3 ofYuktibhās. ā.



256 K. Ramasubramanian and M. D. Srinivas

13. Derivation of theMādhava series forπ

The following accurate value ofπ (correct to 11 decimal places), given byMādhava,
has been cited byNı̄lakan.t.ha in hisĀryabhat. ı̄ya-bhās. ya and byŚaṅkara Vāriyar

in hisKriyākramakar̄ı.77;
a;va;bua;Da;nea:�a;ga:ja;a;
a;h;hu ;ta;a;Za;na;
a:�a;gua;Na;vea;d;Ba;va;a:=+Na;ba;a;h;vaH Ána;va;�a;na;Ka;vRa;Æa;ma;tea vxa;�a;ta;
a;va;~ta:=e :pa;�a:=+�a;Da;ma;a;na;Æa;ma;dM .ja;ga;du ;bRua;Da;aH Á Á
Theπ value given above is:

π ≈ 2827433388233

9 × 1011
= 3.141592653592... (111)

The 13 digit number appearing in the numerator has been specified usingbhūta-
saṅkhya system, whereas the denominator is specified by word numerals.78

13.1. Infinite series forπ

The infinite series forπ attributed to M ādhava is cited byŚaṅkara Vāriyar in his
commentariesKriyākramakar̄ı andYukti-d̄ıpikā. Mādhava’s verse quoted runs
as follows:79v.ya;a;sea va;a;�a:=+�a;Da;�a;na;h;tea .�+.pa;&+.tea v.ya;a;sa;sa;a;ga:=+a;Æa;Ba;h;tea Á;
a:�a;Za:=+a;
a;d;
a;va;Sa;ma;sa;*ñÍËÉ ù Á+;a;a;Ba;�+:mxa;NMa .~vMa :pxa;Ta;k, kÒ +:ma;a;t,a ku +:ya;Ra;t,a Á Á

The diameter multiplied by four and divided by unity [is found and saved]. Again
the products of the diameter and four are divided by the odd numbers like three,
five, etc., and the results are subtracted and added in order [to the earlier result
saved].

The series given by the verse may be represented as

Paridhi = 4 × Vyāsa ×
(

1 − 1

3
+ 1

5
− 1

7
+ . . . . . .

)

. (112)

77Āryabhat. ı̄ya-bhās.ya onĀryabhat.ı̄ya, cited above (fn. 53), comm. onGan. itapāda 10, p. 42;
Kriyākramakar̄ı onLı̄lāvat̄ı, cited above (fn. 14), comm. on verse 199, p. 377.

78In the bhūta-saṅkhyā system,vibudha =33, netra =2, gaja =8, ahi =8, hutāśana =3,
trigun. a =3, veda =4, bha =27,vāran. a =8, bāhu =2. In word numerals,nikharva represents 1011.
Hence,nava-nikharva =9 × 1011.

79op. cit., p. 379.
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The wordsparidhi andvyāsa80 in the above equation refer to the circumference
and diameter respectively. Hence the equation may be rewritten as

π

4
=
(

1 − 1

3
+ 1

5
− 1

7
+ . . .

)

. (113)

Pi
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A
i−1

i−1P

B
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n
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k
k

i−1
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N

Blown up version
  of this quadrant

i

i

C

FIGURE 8. Geometrical construction used in the proof of the
infinite series forπ .

We shall now present the derivation of the above result as outlined in Yuk-

tibhās. ā of Jyes.t.hadeva andKriyākramakar̄ı of Śaṅkara Vāriyar. For this pur-
pose, let us consider the quadrantO P0PnSof the square circumscribing the given
circle (see Figure 8). Divide the sideP0Pn into n equal parts (n very large).P0Pi ’s

80Nı̄lakan. t.ha, in his Āryabhat. ı̄ya-bhās.ya, presents the etymological derivation of the

word vyāsa as ‘the one which splits the circle into two halves’:v.ya;a;sea;na ;
a;h vxa:�Mav.ya;~ya;tea Á (Āryabhat.ı̄ya-bhās.ya, cited above (fn. 53), comm. onGan. itapāda 11, p. 43).
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are thebhujās andO Pi ’s are thekarn. as denoted byki . The points of intersection
of thesekarn. as and the circle are marked asAi s.

Thebhujās P0Pi , thekarn. as ki and the east-west lineO P0 form right-angled
triangles whose hypotenuses are given by

k2
i = r 2 +

(

i r

n

)2

, (114)

wherer is the radius of the circle.
The feet of perpendiculars from the pointsAi−1 andPi−1 along thei th karn. a

are denoted byBi and Ci . The trianglesO Pi−1Ci and O Ai−1Bi are similar.
Hence,

Ai−1Bi

O Ai−1
= Pi−1Ci

O Pi−1
. (115)

Similarly trianglesPi−1Ci Pi andP0O Pi are similar. Hence,

Pi−1Ci

Pi−1Pi
= O P0

O Pi
. (116)

From these two relations we have,

Ai−1Bi = O Ai−1.O P0.Pi−1Pi

O Pi−1.O Pi

= Pi−1Pi × O Ai−1

O Pi−1
× O P0

O Pi

=
( r

n

)

× r

ki−1
× r

ki

=
( r

n

)

(

r 2

ki−1ki

)

. (117)

It is then noted that whenn is large, the RsinesAi−1Bi can be taken as the arc-bits
themselves. :pa;�a:=+�a;Da;Ka;Nq+.~ya;a;DRa:$ya;a → :pa;�a:=+DyMa;Za

i.e., Ai−1Bi → Âi−1Ai .

Thus, 1
8th of the circumference of the circle can be written as sum of the con-

tributions given by (117). That is

C

8
≈
( r

n

)

[(

r 2

k0k1

)

+
(

r 2

k1k2

)

+
(

r 2

k2k3

)

+ · · · +
(

r 2

kn−1kn

)]

. (118)
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Though this is the expression that actually needs to be evaluated, the text men-
tions that there may not be much difference in approximatingit by either of the
following expressions:

[

C

8

]

le f t
=
( r

n

)

[(

r 2

k2
0

)

+
(

r 2

k2
1

)

+
(

r 2

k2
2

)

+ · · · +
(

r 2

k2
n−1

)]

(119)

or

[

C

8

]

r ight
=
( r

n

)

[(

r 2

k2
1

)

+
(

r 2

k2
2

)

+
(

r 2

k2
3

)

+ · · · +
(

r 2

k2
n

)]

. (120)

It can be easily seen that

[

C

8

]

r ight
<

C

8
<

[

C

8

]

le f t
. (121)

In other words, though the actual value of the circumferencelies in between the
values given by (120) and (119) what is being said is that there will not be much
difference if we divide by the square of either of thekarn. as rather than by the
product of two successive ones. Actually, the difference between (120) and (119)
is given by

( r

n

)

[(

r 2

k2
0

)

−
(

r 2

k2
n

)]

=
( r

n

)

[

1 −
(

1

2

)]

(since k2
0, k2

n = r 2, 2r 2)

=
( r

n

)

(

1

2

)

(122)

Evidently this difference approaches zero asn becomes very large, as noted in
both the textsYuktibhās. ā andKriyākramakar̄ı.

The terms in (120) are evaluated using theśodhya-phala technique (binomial
series, discussed earlier in Section 11) and each one of themmay be re-written in
the form81

r

n

(

r 2

k2
i

)

= r

n
− r

n

(

k2
i − r 2

r 2

)

+ r

n

(

k2
i − r 2

r 2

)2

− . . . (123)

81It may be noted that this series is convergent sincek2
i = r 2 +

(

ir
n

)2
and 0≤ (k2

i − r 2) < r 2

for i < n.
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Using (114) and (123) in (120), we obtain:

C

8
=

n
∑

i=1

r

n

(

r 2

k2
i

)

=
n
∑

i=1

( r

n

)





r 2

r 2 +
( ir

n

)2



 (124)

=
n
∑

i=1







r

n
− r

n





( ir
n

)2

r 2



+ r

n





( ir
n

)2

r 2





2

− . . .






(125)

=
( r

n

)

[1 + 1 + . . . + 1]

−
( r

n

)

(

1

r 2

)

[

( r

n

)2
+
(

2r

n

)2

+ . . . +
(nr

n

)2
]

+
( r

n

)

(

1

r 4

)

[

( r

n

)4
+
(

2r

n

)4

+ . . . +
(nr

n

)4
]

−
( r

n

)

(

1

r 6

)

[

( r

n

)6
+
(

2r

n

)6

+ . . . +
(nr

n

)6
]

+ . . . . (126)

Each of the terms in (126) is a sum of results (phala-yoga) which we need to
estimate whenn is very large, and we have a series of them (phala-paramparā)
which are alternatively positive and negative. Clearly thefirst term is just the sum
of thebhujā-khan. d. as.

The bhujās themselves are given by the integral multiples ofbhujā-khan. d. a,
namely, r

n , 2r
n , . . . nr

n . In the series expression for the circumference given above,
we thus have thesaṅkalitas or summations of even powers of thebhujās, such

as thebhujā-varga-saṅkalita,
( r

n

)2 +
(

2r
n

)2
+ .... +

( nr
n

)2, bhujā-varga-varga-

saṅkalita,
( r

n

)4 +
(

2r
n

)4
+ ..... +

(nr
n

)4, and so on.

If we take out the powers ofbhujā-khan. d. a
r
n , the summations involved are

those of even powers of the natural numbers, namelyedādyekottara-varga-
saṅkalita, 12 + 22 + ... + n2, edādyekottara-varga-varga-saṅkalita, 14 + 24 +
... + n4, and so on.
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Now, recalling the estimates that were obtained earlier forthesesaṅkalitas,
whenn is large,

n
∑

i=1

i k ≈ nk+1

k + 1
, (127)

we arrive at the result82

C

8
= r

(

1 − 1

3
+ 1

5
− 1

7
+ · · ·

)

, (128)

which is same as (112).

14. Derivation of end-correction terms (Antya-sam. skāra)

It is well known that the series given by (112) forπ
4 is an extremely slowly con-

verging series. It is so slow that even for obtaining the value of π correct to 2
decimal places one has to find the sum of hundreds of terms and for getting it
correct to 4-5 decimal places we need to consider millions ofterms. Mādhava

seems to have found an ingenious way to circumvent this problem. The technique
employed byMādhava is known asantya-sam. skāra. The nomenclature stems
from the fact that a correction (sam. skara) is applied towards the end (anta) of the
series, when it is terminated after considering only a certain number of terms from
the beginning.

14.1. The criterion for antya-sam. skāra to yield accurate result

The discussion onantya-sam. skāra in bothYuktibhās. ā andKriyākramakar̄ı com-
mences with the question:

How is it that one obtains the value of the circumference moreaccurately by doing
antya-sam. skara, instead of repeatedly dividing by odd numbers?83

82In modern terminology, the above derivation amounts to the evaluation of the following integral

C

8
= lim

n→∞

n
∑

i=1

( r

n

)







r 2

r 2 +
(

ir
n

)2






= r

∫ 1

0

dx

1+ x2
.

83k+:TMa :pua;na:=;�a mua;hu ;
a;vRa;Sa;ma;sa;*ñÍËÉ ù Á+;a;a;h:=+Nea;na l+.Bya;~ya :pa;�a:=+DeaH A;a;sa;�a;tva;m,a A;ntya-.sMa;~k+:a:=e +Na A;a;pa;a;dùÅ;a;tea Á o+..
ya;tea Á . . . (Kriyākramakar̄ı on Lı̄lāvat̄ı, cited above (fn. 14),
comm. on verse 199, p. 386.)
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The argument adduced in favor of terminating the series at any desired term, still
ensuring the accuracy, is as follows. Let the series forπ

4 be written as

π

4
= 1 − 1

3
+ 1

5
− 1

7
. . . + (−1)

p−3
2

1

p − 2
+ (−1)

p−1
2

1

ap−2
, (129)

where 1
ap−2

is the correction term applied after odd denominatorp − 2. On the

other hand, if the correction terml
ap

, is applied after the odd denominatorp, then

π

4
= 1 − 1

3
+ 1

5
− 1

7
. . . + (−1)

p−3
2

1

p − 2
+ (−1)

p−1
2

1

p
+ (−1)

p+1
2

1

ap
. (130)

If the correction terms indeed lead to the exact result, thenboth the series (129)
and (130) should yield the same result. That is,

1

ap−2
= 1

p
− 1

ap
or

1

ap−2
+ 1

ap
= 1

p
, (131)

is the criterion that must be satisfied for the end-correction (antya-sam. skāra) to
lead to the exact result.

14.2. Successive approximations to get more accurate correction-terms

The criterion given by (131) is trivially satisfied when we chooseap−2 = ap =
2p. However, this value 2p cannot be assigned to both the correction-divisors84

ap−2 andap because both the corrections should follow the same rule. That is,

ap−2 = 2p, ⇒ ap = 2(p + 2)

or, ap = 2p, ⇒ ap−2 = 2(p − 2).

We can, however, have bothap−2 andap close to 2p by takingap−2 = 2p − 2
andap = 2p + 2, as there will always persist this much difference betweenp − 2
and p when they are doubled. Hence, the first (order) estimate of the correction
divisor is given as, “double the even number above the last odd-number divisor
p”,

ap = 2(p + 1). (132)

But, it can be seen right away that, with this value of the correction divisor, the
condition for accuracy (131), stated above, is not exactly satisfied. Therefore a

84By the term correction-divisor (sam. skāra-hāraka) is meant the divisor of the correction term.
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measure of inaccuracy (sthaulya) E(p) is introduced

E(p) =
[

1

ap−2
+ 1

ap

]

− 1

p
. (133)

Now, since the error cannot be eliminated, the objective is to find the correction
denominatorsap such that the inaccuracyE(p) is minimised. When we setap =
2(p + 1), the inaccuracy will be

E(p) =
[

1

(2p − 2)
+ 1

(2p + 2)

]

− 1

p

= 1

(p3 − p)
. (134)

This estimate of the inaccuracy,Ep being positive, shows that the correction has
been over done and hence there has to be a reduction in the correction. This means
that the correction-divisor has to be increased. If we takeap = 2p + 3, thereby
leading toap−2 = 2p − 1, we have

E(p) =
[

1

(2p − 1)
+ 1

(2p + 3)

]

− 1

p

= (−2p + 3)

(4p3 + 4p2 − 3p)
. (135)

Now, the inaccuracy happens to be negative. But, more importantly, it has a term
proportional top in the numerator. Hence, for largep, E(p) given by (135) varies
inversely asp2, while for the divisor given by (132),E(p) as given by (134) varied
inversely asp3.85

From (134) and (135) it is obvious that, if we want to reduce the inaccuracy and
thereby obtain a better correction, then a number less than 1has to be added to the
correction-divisor (132) given above. If we try addingrūpa (unity) divided by the
correction divisor itself, i.e., if we setap = 2p+2+ 1

(2p+2) , the contributions from

the correction-divisors get multiplied essentially by
(

1
2p

)

. Hence, to get rid of the

higher order contributions, we need an extra factor of 4, which will be achieved if
we take the correction divisor to be

ap = (2p + 2) + 4

(2p + 2)
= (2p + 2)2 + 4

(2p + 2)
. (136)

85It may be noted that among all possible correction divisors of the typeap = 2p + m, wherem
is an integer, the choice ofm = 2 is optimal, as in all other cases there will arise a term proportional to
p in the numerator of the inaccuracyE(p).
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Then, correspondingly, we have

ap−2 = (2p − 2) + 4

(2p − 2)
= (2p − 2)2 + 4

(2p − 2)
. (137)

We can then calculate the inaccuracy to be

E(p) =









1

(2p − 2) + 4

2p − 2

+ 1

(2p + 2) + 4

2p + 2









−
(

1

p

)

=
[

(4p3)

(4p4 + 16)

]

− (16p4 + 64)

4p(4p4 + 16)

= −4

(p5 + 4p)
. (138)

Clearly, thesthaulya with this (second order) correction divisor has improved
considerably, in that it is now proportional to the inverse fifth power of the odd
number.86

At this stage, we may display the result obtained for the circumference with the
correction term as follows. If only the first order correction (132) is employed, we
have

C = 4d

[

1 − 1

3
+ . . . + (−1)

(p−1)
2

1

p
+ (−1)

(p+1)
2

1

(2p + 2)

]

. (139)

If the second order correction (136) is taken into account, we have

C = 4d









1 − 1

3
+ . . . + (−1)

(p−1)
2

1

p
+ (−1)

(p+1)
2

1

(2p + 2) + 4

(2p + 2)









= 4d






1 − 1

3
+ . . . + (−1)

(p−1)
2

1

p
+ (−1)

(p+1)
2

(p + 1)

2
(p + 1)2 + 1






. (140)

86It may be noted that if we take any other correction-divisorap = 2p + 2 + m
(2p+2)

, wherem is

an integer, we will end up having a contribution proportional to p2 in the numerator of the inaccuracy
E(p), unlessm = 4. Thus the above form (136) is the optimal second order choice for the correction-
divisor.
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The verse due toMādhava that we cited earlier as defining the infinite series for
π
4 is, in fact, the first of a group of four verses that present theseries along with
the above end-correction.87v.ya;a;sea va;a;�a:=+�a;Da;�a;na;h;tea .�+.pa;&+.tea v.ya;a;sa;sa;a;ga:=+a;Æa;Ba;h;tea Á;
a:�a;Za:=+a;
a;d;
a;va;Sa;ma;sa;*ñÍËÉ ù Á+;a;a;Ba;�+:mxa;NMa .~vMa :pxa;Ta;k, kÒ +:ma;a;t,a ku +:ya;Ra;t,a Á Áya;tsa;*ñÍËÉ ùÁ+;a;ya;aY:�a h:=+Nea kx +:tea ;�a;na;vxa:�a;a &+.�a;ta;~tua .ja;a;Æa;ma;ta;ya;a Áta;~ya;a �+:DvRa;ga;ta;a;ya;a .sa;ma;sa;*ñÍËÉ ùÁ+;a;a ta;�+lM gua;Na;eaY;ntea .~ya;a;t,a Á Áta;dõ ;ga;eRa .�+.pa;yua;ta;ea h;a:=+ea v.ya;a;sa;a;�///�a;b.Da;Ga;a;ta;taH :pra;a;gva;t,a Áta;a;Bya;a;ma;a;�Ma .~va;mxa;Nea kx +:tea ;Da;nea [ea;pa O;;va k+.=+N�a;a;yaH Á Ál+.b.DaH :pa;�a:=+�a;DaH .sUa;[ma;ea ba;hu ;kx +:tva;ea h:=+Na;ta;eaY;�a;ta;sUa;[maH .~ya;a;t,a Á Á

The diameter multiplied by four and divided by unity. Again the products of
the diameter and four are divided by the odd numbers like three, five, etc., and the
results are subtracted and added in order.

Take half of the succeeding even number as the multipler at whichever [odd]
number the division process is stopped, because of boredom.The square of that
[even number] added to unity is the divisor. Their ratio has to be multiplied by
the product of the diameter and four as earlier.

The result obtained has to be added if the earlier term [in theseries] has been
subtracted and subtracted if the earlier term has been added. The resulting cir-
cumference is very accurate; in fact more accurate than the one which may be
obtained by continuing the division process [with large number of terms in the
series].

Continuing this process further,Yuktibhās. ā presents the next order correction-
term which is said to be even more accurate:88A;ntea .sa;ma;sa;*ñÍËÉ ùÁ+;a;a;d;l+.va;gRaH .sEa;k+:ea gua;NaH .sa O;;va :pua;naH Á Áyua;ga;gua;
a;Na;ta;ea .�+.pa;yua;taH .sa;ma;sa;*ñÍËÉ ùÁ+;a;a;d;l+.h;ta;ea Ba;vea;d, h;a:=H Á

At the end, [i.e., after terminating the series at some point, apply the correction
term with] the multiplier being square of half of the [next] even number plus 1,
and the divisor being four times the same multiplier with 1 added and multiplied
by half the even number.

87Kriyākramakar̄ı onLı̄lāvat̄ı, cited above (fn. 14), comm. on verse 199, p. 379.
88Gan. ita-yukti-bhās.ā, cited above, p. 82; Also cited inYukti-d̄ıpikā on Tantrasaṅgraha,

cited above (fn. 49), comm. on verse 2.1, p. 103.
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In other words,89

1

ap
=

(

p + 1

2

)2

+ 1

[(p + 1)2 + 4 + 1]

(

p + 1

2

)

= 1

(2p + 2) + 4

2p + 2 + 16

2p + 2

. (141)

Hence, a much better approximation forπ
4 is:90

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · + 1

p
−

(

p + 1

2

)2

+ 1

[(p + 1)2 + 4 + 1]

(

p + 1

2

) . (142)

89The inaccuracy orsthaulya associated with this correction can be calculated to be

E(p) = 2304

(64p7 + 448p5 + 1792p3 − 2304p)
.

The inaccuracy now is proportional to the inverse seventh power of the odd-number. Again it can be
shown that the number 16 in (141) is optimally chosen, in thatany other choice would introduce a term
proportional top2 in the numerator ofE(p), given above.

In fact, it has been noted by C. T. Rajagopal and M. S. Rangachari that D. T. Whiteside has shown
(personal communication of D. T. Whiteside cited in C. T. Rajagopal and M. S. Rangachari, ‘On an
untapped source of medieval Kerala mathematics’, Arch. forHist. Sc. 35(2), 89–102, 1978), that the
end correction-term can be exactly represented by the following continued fraction

1

ap
= 1

(2p + 2) + 22

(2p + 2) + 42

(2p + 2) + 62

(2p + 2) + . . .

.

90It may be noted that this correction term leads to a value ofπ , which is accurate up to 11 decimal
places, when we merely evaluate terms up ton = 50 in the series (142). Incidentally the value ofπ ,
given in the rulevibudhanetra..., attributed to M ādhava that was cited in the beginning of Section 13,
is also accurate up to 11 decimal places.
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15. Transforming the Mādhava series for better convergence

After the estimation of end-correction terms,Yuktibhās. ā goes on to outline a
method of transforming theMādhava series (by making use of the above end-
correction terms) to obtain new series that have much betterconvergence prop-
erties. We now reproduce the following from the English translation of Yuk-
tibhās. ā:91

Therefore, the circumference (of a circle) can be derived intaking into consider-
ation what has been stated above. A method for that is stated in the verse.sa;ma;pa:úãÁ*.a;a;h;ta;ya;ea ya;a .�+.pa;a;dùÅ;a;yua:ja;Ma ..
a;tua.Èåî ÁÁ*+R ;mUa;l+.yua;ta;aH ta;a;Æa;BaH Á:Sa;ea;q+.Za;gua;
a;Na;ta;a;t,a v.ya;a;sa;a;d, :pxa;Ta;ga;a;h;tea;Sua ;
a;va;Sa;ma;yua;teaH Á.sa;ma;P+.l+.yua;�a;ta;ma;pa;h;a;ya .~ya;a;
a;d;�;v.ya;a;sa;sMa;Ba;vaH :pa;�a:=+�a;DaH Á Á (I)

The fifth powers of the odd numbers (1, 3, 5 etc.) are increasedby
4 times themselves. The diameter is multiplied by 16 and it issuc-
cessively divided by the (series of) numbers obtained (as above). The
odd (first, third etc.) quotients obtained are added and are subtracted
from the sum of the even (the second, fourth etc.) quotients.The
result is the circumference corresponding to the given diameter.

Herein above is stated a method for deriving the circumference. If the cor-
rection term is applied to an approximate circumference andthe amount of inac-
curacy (sthaulya) is found, and if it is additive, then the result is higher. Then
it will become more accurate when the correction term obtained from the next
higher odd number is subtracted. Since it happens that (an approximate circum-
ference) becomes more and more accurate by making corrections in succeeding
terms, if the corrections are applied right from the beginning itself, then the cir-
cumference will come out accurate. This is the rationale forthis (above-stated
result).

When it is presumed that the correction-divisor is just double the odd number,
the following is a method to obtain the (accurate) circumference by a correction
for the corresponding inaccuracy (sthaulyām. śa-parihāra), which is given by
the verse:v.ya;a;sa;a;d, va;a;�a:=+�a;Da;�a;na;h;ta;a;t,a :pxa;Ta;ga;a;�Ma �ya;a;dùÅ;a;yua;�//�a;gva;mUa;l+.Ga;nEaH Á;
a:�a.Èåî ÁÁ*+;v.ya;a;sea .~va;mxa;NMa kÒ +:ma;ZaH kx +:tva;a :pa;�a:=+�a;Da:=+a;nea;yaH Á Á (II)

The diameter is multiplied by 4 and is divided, successively, by the
cubes of the odd numbers beginning from 3, which are diminished by
these numbers themselves. The diameter is now multiplied bythree,
and the quotients obtained above, are added to or subtractedfrom,
alternatively. The circumference is to be obtained thus.

If, however, it is taken that half the result (of dividing) bythe last even number
is taken as the correction, there is a method to derive the circumference by that
way also, as given by the versedõùÅ;a;a;
a;d;yua:ja;Ma va;a kx +:ta;ya;eaH v.yea;k+:a h;a:=+a;d, ;
a;dõ ;�a;na.Èåî ÁÁ*+;
a;va;Sk+:}Bea Á;Da;na;m,a �+.Na;ma;nteaY;ntya;ea;DvRa;ga;ta;Ea:ja;kx +:�a;ta;
a;dõR ;sa;
a;h;ta;a h:=+~ya;a;DRa;m,a Á Á (III)

The squares of even numbers commencing from 2, diminished by

91Gan. ita-yukti-bhās.ā, cited above, Section 6.9, pp. 80–82, 205–07, 402–04.
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one, are the divisors for four times the diameter. (Make the several
divisions). The quotients got by (the division) are alternately added
to or subtracted from twice the diameter. In the end, divide four times
the diameter by twice the result of squaring the odd number following
the last even number to which is added 2.

The method ofsthaulya-parihāra, outlined above, essentially involves incor-
porating the correction terms into the series from the beginning itself. Let us recall
that inaccuracy orsthaulya at each stage is given by

E(p) = 1

ap−2
+ 1

ap
−
(

1

p

)

. (143)

The series for the circumference (112) can be expressed in terms of thesesthaulyas
as follows:

C = 4d

[(

1 − 1

a1

)

+
(

1

a1
+ 1

a3
− 1

3

)

−
(

1

a3
+ 1

a5
− 1

5

)

− . . .

]

= 4d

[(

1 − 1

a1

)

+ E(3) − E(5) + E(7) − . . .

]

. (144)

Now, by choosing different correction-divisorsap in (144), we get several
transformed series which have better convergence properties. If we consider the
correction-divisor (136), then using the expression (138)for thesthaulyas, we get

C = 4d

(

1 − 1

5

)

− 16d

[

1

(35 + 4.3)
− 1

(55 + 4.5)
+ 1

(75 + 4.7)
− . . .

]

= 16d

[

1

(15 + 4.1)
− 1

(35 + 4.3)
+ 1

(55 + 4.5)
− . . .

]

. (145)

The above series is given in the versesamapañcāhatayoh. . . .(I). Note that each
term in the above series involves the fifth power of the odd number in the denom-
inator, unlike the original series which only involved the first power of the odd
number. Clearly, this transformed series gives more accurate results with fewer
terms.

If we had used only the lowest order correction (132) and the associatedsthaulya
(134), instead of the correction employed above, then the transformed series is the
one given in the versevyāsād vāridhinihatāt. . .(II)

C = 4d

[

3

4
+ 1

(33 − 3)
− 1

(53 − 5)
+ 1

(73 − 7)
− . . .

]

. (146)

Note that the denominators in the above transformed series are proportional to the
third power of the odd number.
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Even if we take non-optimal correction-divisors, we often end-up obtaining
interesting series. For instance, if we take a non-optimal correction-divisor, say of
the formap = 2p, then thesthaulya is given by

E(p) = 1

(2p − 4)
+ 1

2p
− 1

p

= 1

(p2 − 2p)

= 1

(p − 1)2 − 1
. (147)

Then, the transformed series will be the one given in the verse dvyādiyujām.
vā kr. tayo. . .(III) 92

C = 4d

[

1

2
+ 1

(22 − 1)
− 1

(42 − 1)
+ 1

(62 − 1)
+ . . .

]

. (148)

16. Derivation of theMādhava series for Rsine and Rversine

16.1. First and second order differences of Rsines

We shall now outline the derivation ofMādhava series for Rsine (bhujā-jyā) and
Rversine (́sara), as given inYuktibhās. ā.93 Yuktibhās. ā begins with a discussion
of the first and second order Rsine-differences and derives an exact form of the
result ofĀryabhat.a that the second-order Rsine-differences are proportionalto
the Rsines themselves. We had briefly indicated this proof inSection 5.3.

Here we are interested in obtaining theMādhava series for thejyā andśara of
an arc of lengths indicated byEC in Figure 9. This arc is divided inton equal
arc bits, wheren is large. If the arc lengths = Rθ , then thej -th pin. d. a-jyā, B j is
given by94

B j = jyā

(

js

n

)

= Rsin

(

j θ

n

)

. (149)

92The verse III in fact presents the series (148) along with an end correction-term of the form
(−1)p 4d

2(p+1)2+2
.

93Yuktibhās. ā, cited earlier, Vol. I Section 16.5, pp. 94–103, 221–233, 417–427.
94Figure 9 is essentially the same as Figure 3 considered in section 5 except that thepin. d. ajyās B j

are Rsines associated with multiples of the arc-bits
n into which the arcEC = s is divided. In Figure 3,

the B j ’s are the tabular Rsines associated with multiplies of 225′.
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The correspondingkot.i-jyā K j , and thésara Sj , are given by

K j = kot.i

(

js

n

)

= Rcos

(

j θ

n

)

, (150)

Sj = śara

(

js

n

)

= R

[

1 − cos

(

j θ

n

)]

. (151)

Now, C j C j +1 represents the( j + 1)-th arc bit. Then, for the arcECj = j s
n ,

its pin. d. a-jyā is B j = C j Pj , and the correspondingkot.i-jyā andśara areK j =
C j Tj , Sj = E Pj . Similarly we have

B j +1 = C j +1Pj +1, K j +1 = C j +1Tj +1 and Sj +1 = E Pj +1. (152)

O

jM
jC

GM j+1

C j+1
F

C

j+1T UjjTUj+1

Q j

Pj

Q j+1

Pj+1

E

SE

N

α

F

j+1M

C j+1

C j

FIGURE 9. Computation ofJyā andŚara by Saṅkalitas.

Let M j +1 be the mid-point of the arc-bitC j C j +1 and similarlyM j the mid-
point of the previous (j -th) arc-bit. We shall denote thepin. d. a-jyā of the arc
E M j +1 asB j + 1

2
and clearly

B j + 1
2

= M j +1Q j +1 .

The correspondingkot.i-jyā andśara are

K j + 1
2

= M j +1U j +1 and Sj + 1
2

= E Q j +1 .
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Similarly,

B j − 1
2

= M j Q j , K j − 1
2

= M j U j and Sj − 1
2

= E Q j . (153)

Let α be the chord corresponding to the equal arc-bitss
n as indicated in Fig-

ure 9. That is,C j C j +1 = M j M j +1 = α. Let F be the intersection ofC j Tj

andC j +1Pj +1, and G of M j U j and M j +1Q j +1. The trianglesC j +1FC j and
O Q j +1M j +1 are similar, as their sides are mutually perpendicular. Thus we have

C j +1C j

OM j +1
= C j +1F

O Q j +1
= FC j

Q j +1M j +1
. (154)

Hence we obtain

B j +1 − B j =
( α

R

)

K j + 1
2
, (155)

K j − K j +1 = Sj +1 − Sj =
( α

R

)

B j + 1
2
. (156)

Similarly, the trianglesM j +1GM j andO Pj C j are similar and we get

M j +1M j

OCj
= M j +1G

O Pj
= GM j

Pj C j
. (157)

Thus we obtain

B j + 1
2

− B j − 1
2

=
( α

R

)

K j , (158)

K j − 1
2

− K j + 1
2

= Sj + 1
2

− Sj − 1
2

=
( α

R

)

B j . (159)

We define the Rsine-differences (khan. d. a-jyā) 1 j by

1 j = B j − B j −1 , (160)

with the convention that11 = B1. From (155), we have

1 j =
( α

R

)

K j − 1
2

. (161)



272 K. Ramasubramanian and M. D. Srinivas

From (159) and (161), we also get the second order Rsine-differences (the differ-
ences of the Rsine-differences calledkhan. d. a-jyāntara):

1 j − 1 j +1 = (B j − B j −1) − (B j +1 − B j )

=
( α

R

) (

K j − 1
2

− K j + 1
2

)

=
( α

R

) (

Sj + 1
2

− Sj − 1
2

)

=
( α

R

)2
B j . (162)

Now, if the sum of the second-order Rsine-differences, is subtracted from the first
Rsine-difference, then we get any desired Rsine-difference. That is

11 −
[

(11 − 12) + (12 − 13) + . . . + (1 j −1 − 1 j )
]

= 1 j . (163)

From (162) and (163) we conclude that

11 −
( α

R

)2
(B1 + B2 + · · · + B j −1) = 1 j . (164)

16.2. Rsines and Rversines fromJyā-saṅkalita

We can sum up the Rversine-differences (159), to obtain theśara, Rversine, at the
midpoint of the last arc-bit as follows:

Sn− 1
2

− S1
2

=
(

Sn− 1
2

− Sn− 3
2

)

+ . . . . . .
(

S3
2

− S1
2

)

=
( α

R

)

(Bn−1 + Bn−2 + . . . + B1) . (165)

Using (162), the right hand side of (165) can also be expressed as a summation of
the second order differences. From (164) and (165) it follows that the Rversine at
the midpoint of the last arc-bit is also given by

( α

R

) (

Sn− 1
2

− S1
2

)

= (11 − 1n). (166)

Now, since the first Rsine-difference11 = B1, any desired Rsine can be obtained
by adding the Rsine-differences; these Rsine-differenceshave been obtained in
(164). Now, by making use of (164), the lastpin. d. a-jyā can be expressed as fol-
lows:

Bn = 1n + 1n−1 + . . . + 11
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= n11 −
( α

R

)2 [
(B1 + B2 . . . + Bn−1) + (B1 + B2 . . . + Bn−2) + . . . + B1

]

= nB1 −
( α

R

)2 [
Bn−1 + 2Bn−2 + · · · + (n − 1)B1

]

. (167)

The results (158) – (167), obtained so far, involve no approximations. It is now
shown how better and better approximations to the Rsine and Rversine can be
obtained by takingn to be very large or, equivalently, the arc-bits

n to be very
small. Then, we can approximate the full-chord and the Rsineof the arc-bit by the
arc-bit s

n itself. Also, as a first approximation, we can approximate thepin. d. a-jyās
B j in the equations (164), (165) or (167) by the corresponding arcs themselves.
That is

B j ≈ js

n
. (168)

The result for the Rsine obtained this way is again used to obtain a better approx-
imation for thepin. d. a-jyās B j which is again substituted back into the equations
(165) and (167) and thus by a process of iteration successivebetter approximations
are obtained for the Rsine and Rversine. Now, once we takeB j ≈ j s

n , we will be
led to estimate the sums and repeated sums of natural numbers(ekādyekottara-
saṅkalita), when the number of terms is very large.

16.3. Derivation ofMādhava series by iterative corrections tojyā and śara

As we noted earlier, the relations given by (165) and (167) are exact. But now we
shall show how better and better approximations to the Rsineand Rversine of any
desired arc can be obtained by takingn to be very large or, equivalently, taking the
arc-bit s

n to be very small. Then both the full-chordα, and the first RsineB1 (the
Rsine of the arc-bit), can be approximated by the arc-bits

n itself, and the Rversine
Sn− 1

2
can be taken asSn and the RversineS1

2
may be treated as negligible. Thus
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the above relations (165), (167) become95

S= Sn ≈
( s

nR

)

(Bn−1 + Bn−2 + . . . + B1), (169)

B = Bn ≈ s −
( s

nR

)2
[(B1 + B2 + . . . + Bn−1)

+ (B1 + B2 . . . + Bn−2) + . . . + B1], (170)

whereB andS are the Rsine and Rversine of the desired arc of lengths and the
results will be more accurate, larger the value ofn.

Now, as a first approximation, we take eachpin. d. a-jyā B j in (169) and (170) to
be equal to the corresponding arc itself, that is

B j ≈ js

n
. (171)

Then we obtain for the Rversine

S ≈
( s

nR

) [

(n − 1)
( s

n

)

+ (n − 2)
( s

n

)

+ . . .
]

=
(

1

R

)

( s

n

)2
[(n − 1) + (n − 2) + . . .]. (172)

For largen, we can use the estimate (89) for the sum of integers. Hence (172)
reduces to

S ≈
(

1

R

)

s2

2
. (173)

Equation (173) is the first́sara-sam. skāra, correction to the Rversine. We now
substitute our first approximation (171) to thepin. d. a-jyās B j in (170), which gives
the Rsine of the desired are as a second order repeated sum of thepin. d. a-jyās B j .
We then obtain

B ≈ s−
(

1

R

)2 ( s

n

)3
[(1+2+ . . .+(n−1))+(1+2+ . . . (n−2))+ . . . ]. (174)

95As has been pointed out by one of the reviewers, in the following derivation instead of using
the relation (170), which involves repeated summation ofpin. d. ajyās, one could use the much simpler
relation

B = Bn ≈ s − s

nR
(Sn−1 + Sn−2 + . . . + S1),

which essentially follows from (165) and (170). Then we can iterate between the above equation
and (169) which involve considering only sums of powers of integers. Yuktibhās. ā, however, em-
ployes successive iteration between (169) and (170), whichinvolves consideration of repeated sums of
integers.
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The second term in (174) is advit̄ıya-saṅkalita, the second order repeated sum,
and using the estimate (108), we obtain

B ≈ s −
(

1

R

)2 s3

1.2.3
. (175)

Thus we see that the first correction obtained in (175) to the Rsine-arc-difference
(jyā-cāpāntara-sam. skāra), is equal to the earlier correction to the Rversine (śara-
sam. skāra) given in (173) multiplied by the arc and divided by the radius and 3.

It is noted that the results (173) and (175) are only approximate (prāyika),
since, instead of thesaṅkalita of thepin. d. a-jyās in (169) and (170), we have only
carried outsaṅkalita of the arc-bits. Now that (175) gives a correction to the
difference between the Rsine and the arc (jyā-cāpāntara-sam. skāra), we can use
that to correct the values of thepin. d. a-jyās and thus obtain the next corrections to
the Rversine and Rsine.

Following (175), thepin. d. a-jyās may now be taken as

B j ≈ js

n
−
(

1

R

)2







(

j s
n

)3

1.2.3






. (176)

If we introduce (176) in (169), we obtain

S ≈
(

1

R

)

( s

n

)2
[(n − 1) + (n − 2) + . . .]

−
( s

nR

)

(

1

R

)2 ( s

n

)3
(

1

1.2.3

)

[(n − 1)3 + (n − 2)3 + . . .]. (177)

The first term in (177) was already evaluated while deriving (173). The second
term in (177) can either be estimated as a summation of cubes (ghana-saṅkalita),
or as atr. t̄ıya-saṅkalita, third order (repeated) summation, because each individ-
ual term there has been obtained by doing a second-order (repeated) summation.
Hence, recollecting our earlier estimate (110) for thesesaṅkalitas, we get

S≈
(

1

R

)

s2

1.2
−
(

1

R

)3 s4

1.2.3.4
. (178)

Equation (178) gives a correction (śara-sam. skāra) to the earlier value (173) of
the Rversine, which is nothing but the earlier correction tothe Rsine-arc difference
(jyā-cāpāntara-sam. skāra) given in (175) multiplied by the arc and divided by the
radius and 4.
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Again, if we use the correctedpin. d. a-jyās (176) in the expression (170) for the
Rsine, we obtain

B ≈ s −
(

1

R

)2 ( s

n

)3
[(1 + 2 + .. + (n − 1)) + (1 + 2 + .. + (n − 2)) + ..]

+
(

1

R

)4 ( s

n

)5

×
(

1

1.2.3

)

[

(13 + 23 + ... + (n − 1)3) + (13 + 23 + ... + (n − 2)3) + ..
]

≈ s −
(

1

R

)2 s3

1.2.3
+
(

1

R

)4 s5

1.2.3.4.5
. (179)

The above process can be repeated to obtain successive higher order correc-
tions for the Rversine and Rsine: By first finding a correction(jyā-cāpāntara-
sam. skāra) for the difference between the Rsine and the arc, using thiscorrection
to correct thepin. d. a-jyās B j , and using them in equations (169) and (170) get the
next correction (́sara-sam. skāra) for the Rversines, and the next correction (jyā-
cāpāntara-sam. skāra) for the Rsine-arc-difference itself, which is then employed
to get further corrections iteratively. In this way we are led to theMādhava series
for jyā andśara given by

B = Rsin(s) = s −
(

1

R

)2 s3

(1.2.3)
+
(

1

R

)4 s5

(1.2.3.4.5)

−
(

1

R

)6 s7

(1.2.3.4.5.7)
+ . . . ,

S = R vers(s) =
(

1

R

)

s2

2
−
(

1

R

)3 s4

(1.2.3.4)

+
(

1

R

)5 s6

(1.2.3.4.6)
− . . . . (180)

That is,

sinθ = θ − θ3

(1.2.3)
+ θ5

(1.2.3.4.5)
− θ7

(1.2.3.4.5.6.7)
+ . . . ,

versθ = θ2

(1.2)
− θ4

(1.2.3.4)
+ θ6

(1.2..4.5.6)
− . . . . (181)
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17. Instantaneous velocity and derivatives

As we saw in Section 6.1, themandaphala or the equation of centre for a planet
1µ is given by

Rsin(1µ) =
( r0

R

)

Rsin(M − α), (182)

wherer0 is the mean epicycle radius,M is the mean longitude of the planet andα

the longitude of the apogee. Further as we noted earlier,Muñjāla, Āryabhat.a II
andBhāskara II used the approximation

Rsin(1µ) ≈ 1µ, (183)

in (182) and obtained the following expression as correction to the instantaneous
velocity of the planet:

d

dt
(1µ) =

(r0

R

)

Rcos(M − α)
d

dt
(M − α). (184)

Actually the instantaneous velocity of the planet has to be evaluated from the more
accurate relation

1µ = Rsin−1
[(r0

R

)

Rsin(M − α)
]

. (185)

The correct expression for the instantaneous velocity which involves the derivative
of arc-sine function has been given byNı̄lakan.t.ha in hisTantrasaṅgraha.96..
a;ndÒ +ba;a;hu ;P+.l+.va;gRa;Za;ea;�a;Da;ta;
a:�a:$ya;k+:a;kx +:�a;ta;pa;de ;na .sMa;h:=e +t,a Áta:�a k+:ea;�a;f;P+.l+.�a;l+.�a;�a;k+:a;h;ta;Ma :ke +:ndÒ +Bua;�a;�+:�a:=+h ya;�a l+.Bya;tea Á Áta;
a;dõ ;Za;ea;Dya mxa;ga;a;
a;d;ke ga;teaH ;Æa;[a;pya;ta;a;Æa;ma;h tua k+:kR +:f;a;
a;d;ke Áta;;�ÂåÅ +vea;t~å.Pu +.f;ta:=+a ga;�a;ta;
a;vRa;Da;eaH A;~ya ta;tsa;ma;ya:ja;a .=+vea:=+
a;pa Á Á

Let the product of thekot.iphala [r0 cos(M −α)] in minutes and the daily motion

of themanda-kendra
(

d(M−α)
dt

)

be divided by the square root of the square of

thebāhuphala subtracted from the square oftrijyā

(

√

R2 − r 2
0 sin2(M − α)

)

.

The result thus obtained has to be subtracted from the daily motion of the Moon
if the manda-kendra lies within six signs beginning fromMr. ga and added if it

96Tantrasaṅgraha, cited above (fn. 52), verses 2.53–54, pp.169–170. Elsewhere, Nı̄lakan. t.ha

has ascribed these verses to his teacherDāmodara (Jyotirmı̄mām. sā, Ed. by K. V. Sarma, VVRI,
Hoshiarpur 1977, p. 40).
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lies within six signs beginning fromKarkat.aka. The result gives a more accu-
rate value of the Moon’s angular velocity. In fact, the procedure for finding the
instantaneous velocity of the Sun is also the same.

If (M − α) be themanda-kendra, then the content of the above verse can be
expressed as

d

dt

[

sin−1
( r0

R
sin(M − α)

)]

=
r0 cos(M − α)

d(M − α)

dt
√

R2 − r 2
0 sin2(M − α)

. (186)

The instantaneous velocity of the planet is given by

d

dt
µ = d

dt
(M − α) −

r0 cos(M − α)
d(M − α)

dt
√

R2 − r 2
0 sin2(M − α)

. (187)

Here, the first term in the RHS represents the mean velocity ofthe planet and the
second term the rate of change in themandaphala given by (186).

In hisĀryabhat. ı̄ya-bhās. ya, Nı̄lakan. t.ha explains how his result is more correct
than the traditional result ofMuñjāla andBhāskarācārya:97A;taH :P+.l+.sa;a;}yMa ku +:taH? . . . :pua;na:=+
a;pa ya;ea ;
a;va;Zea;SaH ta:�a k+:ea;�a;f:$ya;a;gua;
a;Na-ta;~ya ;
a:�a:$ya;ya;a h:=+Na;mua;�+:m,a, I+.h k+:ea;�a;f;P+.l+.gua;
a;Na;ta;~ya :ke +:ndÒ +Ba;ea;ga;~yad;eaHP+.l+.k+:ea;f�a;a h:=+Na;mua;�+:m,a I+.�a;ta Á .tea;na ta;tP+.lM ..
a;a;p�a;a;kx +:tMa Bua:ja;a;P+.l-ga;�a;taH .~ya;a;t,a Á k+:Ta;m,a ?..
a;a;pa;ga;�a;ta;sa;}ba;�////�a;nDa:$ya;a;ga;tya;a;na;ya;nea ya;t,a :�Ea:=+a;
a;Za;k+:mua;�M , .$ya;a;ga;tya;a..
a;a;pa;ga;tya;a;na;ya;nea ta;
a;dõ ;pa:=� +a;tMa k+:mRa k+:a;yRa;m,a Á ta:�a :pUa;va;eRa;�e k+:mRa;
a;Na:�Ea:=+a;
a;Za;k+:dõ ;yea;na ya;a d;eaHP+.l+.ga;�a;taH A;a;n�a;a;ta;a ta;Ma v.ya;a;sa;a;DeRa;na h;tva;ad;eaHP+.l+.k+:ea;f�a;a &+.tva;a ta;�a;a;pa;ga;�a;ta;lR +.Bya;a Á ta:�ea;dM :�Ea:=+a;
a;Za;k+:m,a . . .

Hence, how can the results be equal? . . . Again the distinction being: there it was
prescribed that the multiplierkot.i-jyā was to be divided bytrijyā, [but] here
it has been prescribed that the product ofkot.iphala and the rate of change of
kendra be divided bykot.i of thedoh. phala (doh. phalakot.yā).98 . . .

97Āryabhat. ı̄ya of Āryabhat.a, Ed. withBhās.ya of Nı̄lakan. t.ha Somayāj̄ı by K. Sāmbaśiva

Śāstr̄ı, Trivandrum Sanskrit Series 110, Trivandrum 1931, comm. onKālakriyāpāda 22–25, pp. 62–
63.

98The termsdoh. phala andkot.iphala refer to r0
R sin(M − α) and r0

R cos(M − α) respectively.

Hence, the termdoh. phalakot. i refers to
√

1 − (
r0
R sin(M − α))2.
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17.1. Acyuta’s expression for instantaneous velocity involving the derivative
of ratio of two functions

In the third chapter of hisSphut.anirn. ayatantra, Acyuta Pis.ārat.i (c. 1550–
1621), a disciple ofJyes.t.hadeva, discusses various results for the instantaneous
velocity of a planet depending on the form of equation of centre (manda-sam. skāra).
He first presents the formula involving the derivative of arc-sine function given by
Nı̄lakan. t.ha (in the name of (manda)-sphut.agati) as follows:99k+:ea;�a;f;P+.l+.a;h;ta;ke +:ndÒ +ga;tea;yRa;d, d;eaHP+.l+.k+:ea;�a;f;k+:ya;a;�a;ma;nea;na Áh� ;a;na;yua;ta;a;mxa;ga;k+:kR +:f;k+:a;dùÅ;a;ea;mRa;Dya;ga;�a;ta;BRa;va;�a;ta .~å.Pu +.f;Bua;�a;�H Á Á
Acyuta also gives the formula for the instantaneous velocity of a planet if one
were to follow a different model proposed byMunjāla for the equation of centre,
according to whichmandaphala is given by

1µ =
r0

R
sin(M − α)

(

1 − r0

R
cos(M − α)

) , (188)

instead of (182), where1µ is small. If one were to use this formula forman-
daphala for finding the true longitude of the planet, then it may be noted that the
instantaneous velocity will involve the derivative of the ratio of two functions both
varying with time. Taking note of this,Acyuta observes:100kx +:t=+:ïîåéa;~ya ma;a;nd;pa;�a:=+Dea;�a;nRa:ja;k+:NRa;tua;�ya;Eavxa;�a:;dÄâ ;[a;ya;a;
a;va;�a;ta ma;tea k+:�a;Ta;taH kÒ +:ma;eaY;ya;m,a ÁA;DRa;~ya ma;a;nd;pa;�a:=+DeaH [a;ya;vxa;�a:;dÄâ ;pa;[eayua;�M ;
a;kÒ +:ya;a;kÒ +:ma;ma;Ta :pra;�a;ta;pa;a;d;ya;a;maH Á Á

The procedure that was prescribed earlier is with referenceto the School that
conceives of the increase and decrease in the circumferenceof themanda-vr. tta

in accordance with thekarn. a. With reference to the School that conceives of
increase and decrease only according to the half [of it], nowwe prescribe the
appropriate procedure to be adopted.

Acyuta then proceeds to give the correct expression for the instantaneous velocity
of a planet inMunjāla’s model:101

99Sphut.anirn. ayatantra of Acyuta Pis.ārat.i, Ed. by K. V. Sarma, VVRI, Hoshiarpur 1974,
p. 19.

100Ibid., p. 20.
101Ibid., p. 21.
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a:�a:j�a;a;va;ya;a ;
a;va;&+.tMa d;eaHP+.l+.va;gRa;ta;~tua ya;t,a Ámxa;ga;k+:kR +:f;k+:a;
a;d;ke Y;mua;na;a yua;ta;h� ;a;nMa :P+.l+.ma:�a;k+:ea;�a;f:ja;m,a Á Á;
a;d;na;ke +:ndÒ +ga;�a;ta.Èåî ÁÁ*+;mua:;dÄâ :=e +t,a kx +:ta;k+:ea;f� ;a;P+.l+.ya;a ;
a:�a:j�a;a;va;ya;a Á:P+.l+.pUa;vRa;P+.lE +.k+:ta;ea d;lM ;
a;d;na;Bua;�e +.=+
a;pa .sMa;~kx +:�a;ta;BRa;vea;t,a Á Á
Having applied thekot.iphala to trijyā [positively or negatively depending upon
themandakendra], let the square of thedoh. phala be divided by that. This may
be added to or subtracted from thekot.iphala depending on whether it isMr. gādi

or Karkyādi. The product of this [result thus obtained] and the daily motion of
themanda-kendra divided by thekot.iphala and applied totrijyā will be the
correction to the daily motion.

Thus according to Acyuta, the correction to the mean velocity of a planet in
order to obtain its instantaneous velocity is given by

(r0

R
cos(M − α)

)

+

( r0

R
sin(M − α)

)2

(

1−
r0

R
cos(M − α)

)

(

1 − r0

R
cos(M − α)

)

d(M − α)

dt
, (189)

which is nothing but the derivative of the expression given in (188).
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(5) Baks. āli Manuscript(c. 8th cent): Ed. and Tr. by T. Hayashi, inThe
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Vāsanā by Bapudeva Sastri, Varanasi 1866. Ed. withBhāskara’s
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